| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-wunc | Structured version Visualization version GIF version | ||
| Description: A function that maps a set 𝑥 to the smallest weak universe that contains the elements of the set. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| df-wunc | ⊢ wUniCl = (𝑥 ∈ V ↦ ∩ {𝑢 ∈ WUni ∣ 𝑥 ⊆ 𝑢}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cwunm 10720 | . 2 class wUniCl | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cvv 3464 | . . 3 class V | |
| 4 | 2 | cv 1539 | . . . . . 6 class 𝑥 |
| 5 | vu | . . . . . . 7 setvar 𝑢 | |
| 6 | 5 | cv 1539 | . . . . . 6 class 𝑢 |
| 7 | 4, 6 | wss 3931 | . . . . 5 wff 𝑥 ⊆ 𝑢 |
| 8 | cwun 10719 | . . . . 5 class WUni | |
| 9 | 7, 5, 8 | crab 3420 | . . . 4 class {𝑢 ∈ WUni ∣ 𝑥 ⊆ 𝑢} |
| 10 | 9 | cint 4927 | . . 3 class ∩ {𝑢 ∈ WUni ∣ 𝑥 ⊆ 𝑢} |
| 11 | 2, 3, 10 | cmpt 5206 | . 2 class (𝑥 ∈ V ↦ ∩ {𝑢 ∈ WUni ∣ 𝑥 ⊆ 𝑢}) |
| 12 | 1, 11 | wceq 1540 | 1 wff wUniCl = (𝑥 ∈ V ↦ ∩ {𝑢 ∈ WUni ∣ 𝑥 ⊆ 𝑢}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: wuncval 10761 |
| Copyright terms: Public domain | W3C validator |