Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-wunc | Structured version Visualization version GIF version |
Description: A function that maps a set 𝑥 to the smallest weak universe that contains the elements of the set. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
df-wunc | ⊢ wUniCl = (𝑥 ∈ V ↦ ∩ {𝑢 ∈ WUni ∣ 𝑥 ⊆ 𝑢}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cwunm 10388 | . 2 class wUniCl | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cvv 3422 | . . 3 class V | |
4 | 2 | cv 1538 | . . . . . 6 class 𝑥 |
5 | vu | . . . . . . 7 setvar 𝑢 | |
6 | 5 | cv 1538 | . . . . . 6 class 𝑢 |
7 | 4, 6 | wss 3883 | . . . . 5 wff 𝑥 ⊆ 𝑢 |
8 | cwun 10387 | . . . . 5 class WUni | |
9 | 7, 5, 8 | crab 3067 | . . . 4 class {𝑢 ∈ WUni ∣ 𝑥 ⊆ 𝑢} |
10 | 9 | cint 4876 | . . 3 class ∩ {𝑢 ∈ WUni ∣ 𝑥 ⊆ 𝑢} |
11 | 2, 3, 10 | cmpt 5153 | . 2 class (𝑥 ∈ V ↦ ∩ {𝑢 ∈ WUni ∣ 𝑥 ⊆ 𝑢}) |
12 | 1, 11 | wceq 1539 | 1 wff wUniCl = (𝑥 ∈ V ↦ ∩ {𝑢 ∈ WUni ∣ 𝑥 ⊆ 𝑢}) |
Colors of variables: wff setvar class |
This definition is referenced by: wuncval 10429 |
Copyright terms: Public domain | W3C validator |