![]() |
Metamath
Proof Explorer Theorem List (p. 107 of 437) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28351) |
![]() (28352-29876) |
![]() (29877-43667) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | add32i 10601 | Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by NM, 21-Jan-1997.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵) | ||
Theorem | add4i 10602 | Rearrangement of 4 terms in a sum. (Contributed by NM, 9-May-1999.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)) | ||
Theorem | add42i 10603 | Rearrangement of 4 terms in a sum. (Contributed by NM, 22-Aug-1999.) (Proof shortened by OpenAI, 25-Mar-2020.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵)) | ||
Theorem | add12d 10604 | Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐴 + (𝐵 + 𝐶)) = (𝐵 + (𝐴 + 𝐶))) | ||
Theorem | add32d 10605 | Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵)) | ||
Theorem | add4d 10606 | Rearrangement of 4 terms in a sum. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷))) | ||
Theorem | add42d 10607 | Rearrangement of 4 terms in a sum. (Contributed by Mario Carneiro, 27-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵))) | ||
Syntax | cmin 10608 | Extend class notation to include subtraction. |
class − | ||
Syntax | cneg 10609 | Extend class notation to include unary minus. The symbol - is not a class by itself but part of a compound class definition. We do this rather than making it a formal function since it is so commonly used. Note: We use different symbols for unary minus (-) and subtraction cmin 10608 (−) to prevent syntax ambiguity. For example, looking at the syntax definition co 6924, if we used the same symbol then "( − 𝐴 − 𝐵) " could mean either "− 𝐴 " minus "𝐵", or it could represent the (meaningless) operation of classes "− " and "− 𝐵 " connected with "operation" "𝐴". On the other hand, "(-𝐴 − 𝐵) " is unambiguous. |
class -𝐴 | ||
Definition | df-sub 10610* | Define subtraction. Theorem subval 10615 shows its value (and describes how this definition works), theorem subaddi 10712 relates it to addition, and theorems subcli 10701 and resubcli 10687 prove its closure laws. (Contributed by NM, 26-Nov-1994.) |
⊢ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) | ||
Definition | df-neg 10611 | Define the negative of a number (unary minus). We use different symbols for unary minus (-) and subtraction (−) to prevent syntax ambiguity. See cneg 10609 for a discussion of this. (Contributed by NM, 10-Feb-1995.) |
⊢ -𝐴 = (0 − 𝐴) | ||
Theorem | 0cnALT 10612 | Alternate proof of 0cn 10370 which does not reference ax-1cn 10332. (Contributed by NM, 19-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 7-Jan-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 0 ∈ ℂ | ||
Theorem | 0cnALT2 10613 | Alternate proof of 0cnALT 10612 which is shorter, but depends on ax-8 2109, ax-13 2334, ax-sep 5019, ax-nul 5027, ax-pow 5079, ax-pr 5140, ax-un 7228, and every complex number axiom except ax-pre-mulgt0 10351 and ax-pre-sup 10352. (Contributed by NM, 19-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 0 ∈ ℂ | ||
Theorem | negeu 10614* | Existential uniqueness of negatives. Theorem I.2 of [Apostol] p. 18. (Contributed by NM, 22-Nov-1994.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 𝐵) | ||
Theorem | subval 10615* | Value of subtraction, which is the (unique) element 𝑥 such that 𝐵 + 𝑥 = 𝐴. (Contributed by NM, 4-Aug-2007.) (Revised by Mario Carneiro, 2-Nov-2013.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) = (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴)) | ||
Theorem | negeq 10616 | Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.) |
⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) | ||
Theorem | negeqi 10617 | Equality inference for negatives. (Contributed by NM, 14-Feb-1995.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ -𝐴 = -𝐵 | ||
Theorem | negeqd 10618 | Equality deduction for negatives. (Contributed by NM, 14-May-1999.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → -𝐴 = -𝐵) | ||
Theorem | nfnegd 10619 | Deduction version of nfneg 10620. (Contributed by NM, 29-Feb-2008.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ (𝜑 → Ⅎ𝑥𝐴) ⇒ ⊢ (𝜑 → Ⅎ𝑥-𝐴) | ||
Theorem | nfneg 10620 | Bound-variable hypothesis builder for the negative of a complex number. (Contributed by NM, 12-Jun-2005.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥-𝐴 | ||
Theorem | csbnegg 10621 | Move class substitution in and out of the negative of a number. (Contributed by NM, 1-Mar-2008.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌-𝐵 = -⦋𝐴 / 𝑥⦌𝐵) | ||
Theorem | negex 10622 | A negative is a set. (Contributed by NM, 4-Apr-2005.) |
⊢ -𝐴 ∈ V | ||
Theorem | subcl 10623 | Closure law for subtraction. (Contributed by NM, 10-May-1999.) (Revised by Mario Carneiro, 21-Dec-2013.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) | ||
Theorem | negcl 10624 | Closure law for negative. (Contributed by NM, 6-Aug-2003.) |
⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | ||
Theorem | negicn 10625 | -i is a complex number. (Contributed by David A. Wheeler, 7-Dec-2018.) |
⊢ -i ∈ ℂ | ||
Theorem | subf 10626 | Subtraction is an operation on the complex numbers. (Contributed by NM, 4-Aug-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) |
⊢ − :(ℂ × ℂ)⟶ℂ | ||
Theorem | subadd 10627 | Relationship between subtraction and addition. (Contributed by NM, 20-Jan-1997.) (Revised by Mario Carneiro, 21-Dec-2013.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴)) | ||
Theorem | subadd2 10628 | Relationship between subtraction and addition. (Contributed by Scott Fenton, 5-Jul-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐶 + 𝐵) = 𝐴)) | ||
Theorem | subsub23 10629 | Swap subtrahend and result of subtraction. (Contributed by NM, 14-Dec-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐴 − 𝐶) = 𝐵)) | ||
Theorem | pncan 10630 | Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) | ||
Theorem | pncan2 10631 | Cancellation law for subtraction. (Contributed by NM, 17-Apr-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐴) = 𝐵) | ||
Theorem | pncan3 10632 | Subtraction and addition of equals. (Contributed by NM, 14-Mar-2005.) (Proof shortened by Steven Nguyen, 8-Jan-2023.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵 − 𝐴)) = 𝐵) | ||
Theorem | pncan3OLD 10633 | Obsolete version of pncan3 10632 as of 8-Jan-2023. Subtraction and addition of equals. (Contributed by NM, 14-Mar-2005.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵 − 𝐴)) = 𝐵) | ||
Theorem | npcan 10634 | Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐵) = 𝐴) | ||
Theorem | addsubass 10635 | Associative-type law for addition and subtraction. (Contributed by NM, 6-Aug-2003.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐶) = (𝐴 + (𝐵 − 𝐶))) | ||
Theorem | addsub 10636 | Law for addition and subtraction. (Contributed by NM, 19-Aug-2001.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) | ||
Theorem | subadd23 10637 | Commutative/associative law for addition and subtraction. (Contributed by NM, 1-Feb-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐶) = (𝐴 + (𝐶 − 𝐵))) | ||
Theorem | addsub12 10638 | Commutative/associative law for addition and subtraction. (Contributed by NM, 8-Feb-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + (𝐵 − 𝐶)) = (𝐵 + (𝐴 − 𝐶))) | ||
Theorem | 2addsub 10639 | Law for subtraction and addition. (Contributed by NM, 20-Nov-2005.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 + 𝐵) + 𝐶) − 𝐷) = (((𝐴 + 𝐶) − 𝐷) + 𝐵)) | ||
Theorem | addsubeq4 10640 | Relation between sums and differences. (Contributed by Jeff Madsen, 17-Jun-2010.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐶 − 𝐴) = (𝐵 − 𝐷))) | ||
Theorem | pncan3oi 10641 | Subtraction and addition of equals. Almost but not exactly the same as pncan3i 10702 and pncan 10630, this order happens often when applying "operations to both sides" so create a theorem specifically for it. A deduction version of this is available as pncand 10737. (Contributed by David A. Wheeler, 11-Oct-2018.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ ((𝐴 + 𝐵) − 𝐵) = 𝐴 | ||
Theorem | mvrraddi 10642 | Move RHS right addition to LHS. (Contributed by David A. Wheeler, 11-Oct-2018.) |
⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐴 = (𝐵 + 𝐶) ⇒ ⊢ (𝐴 − 𝐶) = 𝐵 | ||
Theorem | mvlladdi 10643 | Move LHS left addition to RHS. (Contributed by David A. Wheeler, 11-Oct-2018.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ (𝐴 + 𝐵) = 𝐶 ⇒ ⊢ 𝐵 = (𝐶 − 𝐴) | ||
Theorem | subid 10644 | Subtraction of a number from itself. (Contributed by NM, 8-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ (𝐴 ∈ ℂ → (𝐴 − 𝐴) = 0) | ||
Theorem | subid1 10645 | Identity law for subtraction. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ (𝐴 ∈ ℂ → (𝐴 − 0) = 𝐴) | ||
Theorem | npncan 10646 | Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) + (𝐵 − 𝐶)) = (𝐴 − 𝐶)) | ||
Theorem | nppcan 10647 | Cancellation law for subtraction. (Contributed by NM, 1-Sep-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴 − 𝐵) + 𝐶) + 𝐵) = (𝐴 + 𝐶)) | ||
Theorem | nnpcan 10648 | Cancellation law for subtraction: ((a-b)-c)+b = a-c holds for complex numbers a,b,c. (Contributed by Alexander van der Vekens, 24-Mar-2018.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴 − 𝐵) − 𝐶) + 𝐵) = (𝐴 − 𝐶)) | ||
Theorem | nppcan3 10649 | Cancellation law for subtraction. (Contributed by Mario Carneiro, 14-Sep-2015.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) + (𝐶 + 𝐵)) = (𝐴 + 𝐶)) | ||
Theorem | subcan2 10650 | Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐶) = (𝐵 − 𝐶) ↔ 𝐴 = 𝐵)) | ||
Theorem | subeq0 10651 | If the difference between two numbers is zero, they are equal. (Contributed by NM, 16-Nov-1999.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵)) | ||
Theorem | npncan2 10652 | Cancellation law for subtraction. (Contributed by Scott Fenton, 21-Jun-2013.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + (𝐵 − 𝐴)) = 0) | ||
Theorem | subsub2 10653 | Law for double subtraction. (Contributed by NM, 30-Jun-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − (𝐵 − 𝐶)) = (𝐴 + (𝐶 − 𝐵))) | ||
Theorem | nncan 10654 | Cancellation law for subtraction. (Contributed by NM, 21-Jun-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − (𝐴 − 𝐵)) = 𝐵) | ||
Theorem | subsub 10655 | Law for double subtraction. (Contributed by NM, 13-May-2004.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − (𝐵 − 𝐶)) = ((𝐴 − 𝐵) + 𝐶)) | ||
Theorem | nppcan2 10656 | Cancellation law for subtraction. (Contributed by NM, 29-Sep-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − (𝐵 + 𝐶)) + 𝐶) = (𝐴 − 𝐵)) | ||
Theorem | subsub3 10657 | Law for double subtraction. (Contributed by NM, 27-Jul-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 − (𝐵 − 𝐶)) = ((𝐴 + 𝐶) − 𝐵)) | ||
Theorem | subsub4 10658 | Law for double subtraction. (Contributed by NM, 19-Aug-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) − 𝐶) = (𝐴 − (𝐵 + 𝐶))) | ||
Theorem | sub32 10659 | Swap the second and third terms in a double subtraction. (Contributed by NM, 19-Aug-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) − 𝐶) = ((𝐴 − 𝐶) − 𝐵)) | ||
Theorem | nnncan 10660 | Cancellation law for subtraction. (Contributed by NM, 4-Sep-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − (𝐵 − 𝐶)) − 𝐶) = (𝐴 − 𝐵)) | ||
Theorem | nnncan1 10661 | Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) − (𝐴 − 𝐶)) = (𝐶 − 𝐵)) | ||
Theorem | nnncan2 10662 | Cancellation law for subtraction. (Contributed by NM, 1-Oct-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐶) − (𝐵 − 𝐶)) = (𝐴 − 𝐵)) | ||
Theorem | npncan3 10663 | Cancellation law for subtraction. (Contributed by Scott Fenton, 23-Jun-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) + (𝐶 − 𝐴)) = (𝐶 − 𝐵)) | ||
Theorem | pnpcan 10664 | Cancellation law for mixed addition and subtraction. (Contributed by NM, 4-Mar-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − (𝐴 + 𝐶)) = (𝐵 − 𝐶)) | ||
Theorem | pnpcan2 10665 | Cancellation law for mixed addition and subtraction. (Contributed by Scott Fenton, 9-Jun-2006.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐶) − (𝐵 + 𝐶)) = (𝐴 − 𝐵)) | ||
Theorem | pnncan 10666 | Cancellation law for mixed addition and subtraction. (Contributed by NM, 30-Jun-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − (𝐴 − 𝐶)) = (𝐵 + 𝐶)) | ||
Theorem | ppncan 10667 | Cancellation law for mixed addition and subtraction. (Contributed by NM, 30-Jun-2005.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐶 − 𝐵)) = (𝐴 + 𝐶)) | ||
Theorem | addsub4 10668 | Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by NM, 4-Mar-2005.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) − (𝐶 + 𝐷)) = ((𝐴 − 𝐶) + (𝐵 − 𝐷))) | ||
Theorem | subadd4 10669 | Rearrangement of 4 terms in a mixed addition and subtraction. (Contributed by NM, 24-Aug-2006.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 − 𝐵) − (𝐶 − 𝐷)) = ((𝐴 + 𝐷) − (𝐵 + 𝐶))) | ||
Theorem | sub4 10670 | Rearrangement of 4 terms in a subtraction. (Contributed by NM, 23-Nov-2007.) |
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 − 𝐵) − (𝐶 − 𝐷)) = ((𝐴 − 𝐶) − (𝐵 − 𝐷))) | ||
Theorem | neg0 10671 | Minus 0 equals 0. (Contributed by NM, 17-Jan-1997.) |
⊢ -0 = 0 | ||
Theorem | negid 10672 | Addition of a number and its negative. (Contributed by NM, 14-Mar-2005.) |
⊢ (𝐴 ∈ ℂ → (𝐴 + -𝐴) = 0) | ||
Theorem | negsub 10673 | Relationship between subtraction and negative. Theorem I.3 of [Apostol] p. 18. (Contributed by NM, 21-Jan-1997.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) | ||
Theorem | subneg 10674 | Relationship between subtraction and negative. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − -𝐵) = (𝐴 + 𝐵)) | ||
Theorem | negneg 10675 | A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by NM, 12-Jan-2002.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ (𝐴 ∈ ℂ → --𝐴 = 𝐴) | ||
Theorem | neg11 10676 | Negative is one-to-one. (Contributed by NM, 8-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 = -𝐵 ↔ 𝐴 = 𝐵)) | ||
Theorem | negcon1 10677 | Negative contraposition law. (Contributed by NM, 9-May-2004.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 = 𝐵 ↔ -𝐵 = 𝐴)) | ||
Theorem | negcon2 10678 | Negative contraposition law. (Contributed by NM, 14-Nov-2004.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 = -𝐵 ↔ 𝐵 = -𝐴)) | ||
Theorem | negeq0 10679 | A number is zero iff its negative is zero. (Contributed by NM, 12-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ (𝐴 ∈ ℂ → (𝐴 = 0 ↔ -𝐴 = 0)) | ||
Theorem | subcan 10680 | Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) = (𝐴 − 𝐶) ↔ 𝐵 = 𝐶)) | ||
Theorem | negsubdi 10681 | Distribution of negative over subtraction. (Contributed by NM, 15-Nov-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 − 𝐵) = (-𝐴 + 𝐵)) | ||
Theorem | negdi 10682 | Distribution of negative over addition. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 + 𝐵) = (-𝐴 + -𝐵)) | ||
Theorem | negdi2 10683 | Distribution of negative over addition. (Contributed by NM, 1-Jan-2006.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 + 𝐵) = (-𝐴 − 𝐵)) | ||
Theorem | negsubdi2 10684 | Distribution of negative over subtraction. (Contributed by NM, 4-Oct-1999.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → -(𝐴 − 𝐵) = (𝐵 − 𝐴)) | ||
Theorem | neg2sub 10685 | Relationship between subtraction and negative. (Contributed by Paul Chapman, 8-Oct-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 − -𝐵) = (𝐵 − 𝐴)) | ||
Theorem | renegcli 10686 | Closure law for negative of reals. (Note: this inference proof style and the deduction theorem usage in renegcl 10688 is deprecated, but is retained for its demonstration value.) (Contributed by NM, 17-Jan-1997.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
⊢ 𝐴 ∈ ℝ ⇒ ⊢ -𝐴 ∈ ℝ | ||
Theorem | resubcli 10687 | Closure law for subtraction of reals. (Contributed by NM, 17-Jan-1997.) (Revised by Mario Carneiro, 27-May-2016.) |
⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐴 − 𝐵) ∈ ℝ | ||
Theorem | renegcl 10688 | Closure law for negative of reals. The weak deduction theorem dedth 4363 is used to convert hypothesis of the inference (deduction) form of this theorem, renegcli 10686, to an antecedent. (Contributed by NM, 20-Jan-1997.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | ||
Theorem | resubcl 10689 | Closure law for subtraction of reals. (Contributed by NM, 20-Jan-1997.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 − 𝐵) ∈ ℝ) | ||
Theorem | negreb 10690 | The negative of a real is real. (Contributed by NM, 11-Aug-1999.) (Revised by Mario Carneiro, 14-Jul-2014.) |
⊢ (𝐴 ∈ ℂ → (-𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ)) | ||
Theorem | peano2cnm 10691 | "Reverse" second Peano postulate analogue for complex numbers: A complex number minus 1 is a complex number. (Contributed by Alexander van der Vekens, 18-Mar-2018.) |
⊢ (𝑁 ∈ ℂ → (𝑁 − 1) ∈ ℂ) | ||
Theorem | peano2rem 10692 | "Reverse" second Peano postulate analogue for reals. (Contributed by NM, 6-Feb-2007.) |
⊢ (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ) | ||
Theorem | negcli 10693 | Closure law for negative. (Contributed by NM, 26-Nov-1994.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ -𝐴 ∈ ℂ | ||
Theorem | negidi 10694 | Addition of a number and its negative. (Contributed by NM, 26-Nov-1994.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 + -𝐴) = 0 | ||
Theorem | negnegi 10695 | A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by NM, 8-Feb-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ --𝐴 = 𝐴 | ||
Theorem | subidi 10696 | Subtraction of a number from itself. (Contributed by NM, 26-Nov-1994.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 − 𝐴) = 0 | ||
Theorem | subid1i 10697 | Identity law for subtraction. (Contributed by NM, 29-May-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 − 0) = 𝐴 | ||
Theorem | negne0bi 10698 | A number is nonzero iff its negative is nonzero. (Contributed by NM, 10-Aug-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (𝐴 ≠ 0 ↔ -𝐴 ≠ 0) | ||
Theorem | negrebi 10699 | The negative of a real is real. (Contributed by NM, 11-Aug-1999.) |
⊢ 𝐴 ∈ ℂ ⇒ ⊢ (-𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ) | ||
Theorem | negne0i 10700 | The negative of a nonzero number is nonzero. (Contributed by NM, 30-Jul-2004.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐴 ≠ 0 ⇒ ⊢ -𝐴 ≠ 0 |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |