Home | Metamath
Proof Explorer Theorem List (p. 107 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | inaprc 10601 | An equivalent to the Tarski-Grothendieck Axiom: there is a proper class of inaccessible cardinals. (Contributed by Mario Carneiro, 9-Jun-2013.) |
⊢ Inacc ∉ V | ||
Syntax | ctskm 10602 | Extend class definition to include the map whose value is the smallest Tarski class. |
class tarskiMap | ||
Definition | df-tskm 10603* | A function that maps a set 𝑥 to the smallest Tarski class that contains the set. (Contributed by FL, 30-Dec-2010.) |
⊢ tarskiMap = (𝑥 ∈ V ↦ ∩ {𝑦 ∈ Tarski ∣ 𝑥 ∈ 𝑦}) | ||
Theorem | tskmval 10604* | Value of our tarski map. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 20-Sep-2014.) |
⊢ (𝐴 ∈ 𝑉 → (tarskiMap‘𝐴) = ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥}) | ||
Theorem | tskmid 10605 | The set 𝐴 is an element of the smallest Tarski class that contains 𝐴. CLASSES1 th. 5. (Contributed by FL, 30-Dec-2010.) (Proof shortened by Mario Carneiro, 21-Sep-2014.) |
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ (tarskiMap‘𝐴)) | ||
Theorem | tskmcl 10606 | A Tarski class that contains 𝐴 is a Tarski class. (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 21-Sep-2014.) |
⊢ (tarskiMap‘𝐴) ∈ Tarski | ||
Theorem | sstskm 10607* | Being a part of (tarskiMap‘𝐴). (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
⊢ (𝐴 ∈ 𝑉 → (𝐵 ⊆ (tarskiMap‘𝐴) ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ⊆ 𝑥))) | ||
Theorem | eltskm 10608* | Belonging to (tarskiMap‘𝐴). (Contributed by FL, 17-Apr-2011.) (Proof shortened by Mario Carneiro, 21-Sep-2014.) |
⊢ (𝐴 ∈ 𝑉 → (𝐵 ∈ (tarskiMap‘𝐴) ↔ ∀𝑥 ∈ Tarski (𝐴 ∈ 𝑥 → 𝐵 ∈ 𝑥))) | ||
This section derives the basics of real and complex numbers. We first construct and axiomatize real and complex numbers (e.g., ax-resscn 10937). After that, we derive their basic properties, various operations like addition (df-add 10891) and sine (df-sin 15788), and subsets such as the integers (df-z 12329) and natural numbers (df-nn 11983). | ||
Syntax | cnpi 10609 |
The set of positive integers, which is the set of natural numbers ω
with 0 removed.
Note: This is the start of the Dedekind-cut construction of real and complex numbers. The last lemma of the construction is mulcnsrec 10909. The actual set of Dedekind cuts is defined by df-np 10746. |
class N | ||
Syntax | cpli 10610 | Positive integer addition. |
class +N | ||
Syntax | cmi 10611 | Positive integer multiplication. |
class ·N | ||
Syntax | clti 10612 | Positive integer ordering relation. |
class <N | ||
Syntax | cplpq 10613 | Positive pre-fraction addition. |
class +pQ | ||
Syntax | cmpq 10614 | Positive pre-fraction multiplication. |
class ·pQ | ||
Syntax | cltpq 10615 | Positive pre-fraction ordering relation. |
class <pQ | ||
Syntax | ceq 10616 | Equivalence class used to construct positive fractions. |
class ~Q | ||
Syntax | cnq 10617 | Set of positive fractions. |
class Q | ||
Syntax | c1q 10618 | The positive fraction constant 1. |
class 1Q | ||
Syntax | cerq 10619 | Positive fraction equivalence class. |
class [Q] | ||
Syntax | cplq 10620 | Positive fraction addition. |
class +Q | ||
Syntax | cmq 10621 | Positive fraction multiplication. |
class ·Q | ||
Syntax | crq 10622 | Positive fraction reciprocal operation. |
class *Q | ||
Syntax | cltq 10623 | Positive fraction ordering relation. |
class <Q | ||
Syntax | cnp 10624 | Set of positive reals. |
class P | ||
Syntax | c1p 10625 | Positive real constant 1. |
class 1P | ||
Syntax | cpp 10626 | Positive real addition. |
class +P | ||
Syntax | cmp 10627 | Positive real multiplication. |
class ·P | ||
Syntax | cltp 10628 | Positive real ordering relation. |
class <P | ||
Syntax | cer 10629 | Equivalence class used to construct signed reals. |
class ~R | ||
Syntax | cnr 10630 | Set of signed reals. |
class R | ||
Syntax | c0r 10631 | The signed real constant 0. |
class 0R | ||
Syntax | c1r 10632 | The signed real constant 1. |
class 1R | ||
Syntax | cm1r 10633 | The signed real constant -1. |
class -1R | ||
Syntax | cplr 10634 | Signed real addition. |
class +R | ||
Syntax | cmr 10635 | Signed real multiplication. |
class ·R | ||
Syntax | cltr 10636 | Signed real ordering relation. |
class <R | ||
Definition | df-ni 10637 | Define the class of positive integers. This is a "temporary" set used in the construction of complex numbers df-c 10886, and is intended to be used only by the construction. (Contributed by NM, 15-Aug-1995.) (New usage is discouraged.) |
⊢ N = (ω ∖ {∅}) | ||
Definition | df-pli 10638 | Define addition on positive integers. This is a "temporary" set used in the construction of complex numbers df-c 10886, and is intended to be used only by the construction. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.) |
⊢ +N = ( +o ↾ (N × N)) | ||
Definition | df-mi 10639 | Define multiplication on positive integers. This is a "temporary" set used in the construction of complex numbers df-c 10886, and is intended to be used only by the construction. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.) |
⊢ ·N = ( ·o ↾ (N × N)) | ||
Definition | df-lti 10640 | Define 'less than' on positive integers. This is a "temporary" set used in the construction of complex numbers df-c 10886, and is intended to be used only by the construction. (Contributed by NM, 6-Feb-1996.) (New usage is discouraged.) |
⊢ <N = ( E ∩ (N × N)) | ||
Theorem | elni 10641 | Membership in the class of positive integers. (Contributed by NM, 15-Aug-1995.) (New usage is discouraged.) |
⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅)) | ||
Theorem | elni2 10642 | Membership in the class of positive integers. (Contributed by NM, 27-Nov-1995.) (New usage is discouraged.) |
⊢ (𝐴 ∈ N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴)) | ||
Theorem | pinn 10643 | A positive integer is a natural number. (Contributed by NM, 15-Aug-1995.) (New usage is discouraged.) |
⊢ (𝐴 ∈ N → 𝐴 ∈ ω) | ||
Theorem | pion 10644 | A positive integer is an ordinal number. (Contributed by NM, 23-Mar-1996.) (New usage is discouraged.) |
⊢ (𝐴 ∈ N → 𝐴 ∈ On) | ||
Theorem | piord 10645 | A positive integer is ordinal. (Contributed by NM, 29-Jan-1996.) (New usage is discouraged.) |
⊢ (𝐴 ∈ N → Ord 𝐴) | ||
Theorem | niex 10646 | The class of positive integers is a set. (Contributed by NM, 15-Aug-1995.) (New usage is discouraged.) |
⊢ N ∈ V | ||
Theorem | 0npi 10647 | The empty set is not a positive integer. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.) |
⊢ ¬ ∅ ∈ N | ||
Theorem | 1pi 10648 | Ordinal 'one' is a positive integer. (Contributed by NM, 29-Oct-1995.) (New usage is discouraged.) |
⊢ 1o ∈ N | ||
Theorem | addpiord 10649 | Positive integer addition in terms of ordinal addition. (Contributed by NM, 27-Aug-1995.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵)) | ||
Theorem | mulpiord 10650 | Positive integer multiplication in terms of ordinal multiplication. (Contributed by NM, 27-Aug-1995.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐴 ·o 𝐵)) | ||
Theorem | mulidpi 10651 | 1 is an identity element for multiplication on positive integers. (Contributed by NM, 4-Mar-1996.) (Revised by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.) |
⊢ (𝐴 ∈ N → (𝐴 ·N 1o) = 𝐴) | ||
Theorem | ltpiord 10652 | Positive integer 'less than' in terms of ordinal membership. (Contributed by NM, 6-Feb-1996.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ 𝐴 ∈ 𝐵)) | ||
Theorem | ltsopi 10653 | Positive integer 'less than' is a strict ordering. (Contributed by NM, 8-Feb-1996.) (Proof shortened by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.) |
⊢ <N Or N | ||
Theorem | ltrelpi 10654 | Positive integer 'less than' is a relation on positive integers. (Contributed by NM, 8-Feb-1996.) (New usage is discouraged.) |
⊢ <N ⊆ (N × N) | ||
Theorem | dmaddpi 10655 | Domain of addition on positive integers. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.) |
⊢ dom +N = (N × N) | ||
Theorem | dmmulpi 10656 | Domain of multiplication on positive integers. (Contributed by NM, 26-Aug-1995.) (New usage is discouraged.) |
⊢ dom ·N = (N × N) | ||
Theorem | addclpi 10657 | Closure of addition of positive integers. (Contributed by NM, 18-Oct-1995.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 +N 𝐵) ∈ N) | ||
Theorem | mulclpi 10658 | Closure of multiplication of positive integers. (Contributed by NM, 18-Oct-1995.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) ∈ N) | ||
Theorem | addcompi 10659 | Addition of positive integers is commutative. (Contributed by NM, 27-Aug-1995.) (New usage is discouraged.) |
⊢ (𝐴 +N 𝐵) = (𝐵 +N 𝐴) | ||
Theorem | addasspi 10660 | Addition of positive integers is associative. (Contributed by NM, 27-Aug-1995.) (New usage is discouraged.) |
⊢ ((𝐴 +N 𝐵) +N 𝐶) = (𝐴 +N (𝐵 +N 𝐶)) | ||
Theorem | mulcompi 10661 | Multiplication of positive integers is commutative. (Contributed by NM, 21-Sep-1995.) (New usage is discouraged.) |
⊢ (𝐴 ·N 𝐵) = (𝐵 ·N 𝐴) | ||
Theorem | mulasspi 10662 | Multiplication of positive integers is associative. (Contributed by NM, 21-Sep-1995.) (New usage is discouraged.) |
⊢ ((𝐴 ·N 𝐵) ·N 𝐶) = (𝐴 ·N (𝐵 ·N 𝐶)) | ||
Theorem | distrpi 10663 | Multiplication of positive integers is distributive. (Contributed by NM, 21-Sep-1995.) (New usage is discouraged.) |
⊢ (𝐴 ·N (𝐵 +N 𝐶)) = ((𝐴 ·N 𝐵) +N (𝐴 ·N 𝐶)) | ||
Theorem | addcanpi 10664 | Addition cancellation law for positive integers. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ((𝐴 +N 𝐵) = (𝐴 +N 𝐶) ↔ 𝐵 = 𝐶)) | ||
Theorem | mulcanpi 10665 | Multiplication cancellation law for positive integers. (Contributed by NM, 4-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → ((𝐴 ·N 𝐵) = (𝐴 ·N 𝐶) ↔ 𝐵 = 𝐶)) | ||
Theorem | addnidpi 10666 | There is no identity element for addition on positive integers. (Contributed by NM, 28-Nov-1995.) (New usage is discouraged.) |
⊢ (𝐴 ∈ N → ¬ (𝐴 +N 𝐵) = 𝐴) | ||
Theorem | ltexpi 10667* | Ordering on positive integers in terms of existence of sum. (Contributed by NM, 15-Mar-1996.) (Revised by Mario Carneiro, 14-Jun-2013.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 <N 𝐵 ↔ ∃𝑥 ∈ N (𝐴 +N 𝑥) = 𝐵)) | ||
Theorem | ltapi 10668 | Ordering property of addition for positive integers. (Contributed by NM, 7-Mar-1996.) (New usage is discouraged.) |
⊢ (𝐶 ∈ N → (𝐴 <N 𝐵 ↔ (𝐶 +N 𝐴) <N (𝐶 +N 𝐵))) | ||
Theorem | ltmpi 10669 | Ordering property of multiplication for positive integers. (Contributed by NM, 8-Feb-1996.) (New usage is discouraged.) |
⊢ (𝐶 ∈ N → (𝐴 <N 𝐵 ↔ (𝐶 ·N 𝐴) <N (𝐶 ·N 𝐵))) | ||
Theorem | 1lt2pi 10670 | One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.) |
⊢ 1o <N (1o +N 1o) | ||
Theorem | nlt1pi 10671 | No positive integer is less than one. (Contributed by NM, 23-Mar-1996.) (New usage is discouraged.) |
⊢ ¬ 𝐴 <N 1o | ||
Theorem | indpi 10672* | Principle of Finite Induction on positive integers. (Contributed by NM, 23-Mar-1996.) (New usage is discouraged.) |
⊢ (𝑥 = 1o → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 +N 1o) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ N → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ N → 𝜏) | ||
Definition | df-plpq 10673* | Define pre-addition on positive fractions. This is a "temporary" set used in the construction of complex numbers df-c 10886, and is intended to be used only by the construction. This "pre-addition" operation works directly with ordered pairs of integers. The actual positive fraction addition +Q (df-plq 10679) works with the equivalence classes of these ordered pairs determined by the equivalence relation ~Q (df-enq 10676). (Analogous remarks apply to the other "pre-" operations in the complex number construction that follows.) From Proposition 9-2.3 of [Gleason] p. 117. (Contributed by NM, 28-Aug-1995.) (New usage is discouraged.) |
⊢ +pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ 〈(((1st ‘𝑥) ·N (2nd ‘𝑦)) +N ((1st ‘𝑦) ·N (2nd ‘𝑥))), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉) | ||
Definition | df-mpq 10674* | Define pre-multiplication on positive fractions. This is a "temporary" set used in the construction of complex numbers df-c 10886, and is intended to be used only by the construction. From Proposition 9-2.4 of [Gleason] p. 119. (Contributed by NM, 28-Aug-1995.) (New usage is discouraged.) |
⊢ ·pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ 〈((1st ‘𝑥) ·N (1st ‘𝑦)), ((2nd ‘𝑥) ·N (2nd ‘𝑦))〉) | ||
Definition | df-ltpq 10675* | Define pre-ordering relation on positive fractions. This is a "temporary" set used in the construction of complex numbers df-c 10886, and is intended to be used only by the construction. Similar to Definition 5 of [Suppes] p. 162. (Contributed by NM, 28-Aug-1995.) (New usage is discouraged.) |
⊢ <pQ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((1st ‘𝑥) ·N (2nd ‘𝑦)) <N ((1st ‘𝑦) ·N (2nd ‘𝑥)))} | ||
Definition | df-enq 10676* | Define equivalence relation for positive fractions. This is a "temporary" set used in the construction of complex numbers df-c 10886, and is intended to be used only by the construction. From Proposition 9-2.1 of [Gleason] p. 117. (Contributed by NM, 27-Aug-1995.) (New usage is discouraged.) |
⊢ ~Q = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))} | ||
Definition | df-nq 10677* | Define class of positive fractions. This is a "temporary" set used in the construction of complex numbers df-c 10886, and is intended to be used only by the construction. From Proposition 9-2.2 of [Gleason] p. 117. (Contributed by NM, 16-Aug-1995.) (New usage is discouraged.) |
⊢ Q = {𝑥 ∈ (N × N) ∣ ∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd ‘𝑦) <N (2nd ‘𝑥))} | ||
Definition | df-erq 10678 | Define a convenience function that "reduces" a fraction to lowest terms. Note that in this form, it is not obviously a function; we prove this in nqerf 10695. (Contributed by NM, 27-Aug-1995.) (New usage is discouraged.) |
⊢ [Q] = ( ~Q ∩ ((N × N) × Q)) | ||
Definition | df-plq 10679 | Define addition on positive fractions. This is a "temporary" set used in the construction of complex numbers df-c 10886, and is intended to be used only by the construction. From Proposition 9-2.3 of [Gleason] p. 117. (Contributed by NM, 24-Aug-1995.) (New usage is discouraged.) |
⊢ +Q = (([Q] ∘ +pQ ) ↾ (Q × Q)) | ||
Definition | df-mq 10680 | Define multiplication on positive fractions. This is a "temporary" set used in the construction of complex numbers df-c 10886, and is intended to be used only by the construction. From Proposition 9-2.4 of [Gleason] p. 119. (Contributed by NM, 24-Aug-1995.) (New usage is discouraged.) |
⊢ ·Q = (([Q] ∘ ·pQ ) ↾ (Q × Q)) | ||
Definition | df-1nq 10681 | Define positive fraction constant 1. This is a "temporary" set used in the construction of complex numbers df-c 10886, and is intended to be used only by the construction. From Proposition 9-2.2 of [Gleason] p. 117. (Contributed by NM, 29-Oct-1995.) (New usage is discouraged.) |
⊢ 1Q = 〈1o, 1o〉 | ||
Definition | df-rq 10682 | Define reciprocal on positive fractions. It means the same thing as one divided by the argument (although we don't define full division since we will never need it). This is a "temporary" set used in the construction of complex numbers df-c 10886, and is intended to be used only by the construction. From Proposition 9-2.5 of [Gleason] p. 119, who uses an asterisk to denote this unary operation. (Contributed by NM, 6-Mar-1996.) (New usage is discouraged.) |
⊢ *Q = (◡ ·Q “ {1Q}) | ||
Definition | df-ltnq 10683 | Define ordering relation on positive fractions. This is a "temporary" set used in the construction of complex numbers df-c 10886, and is intended to be used only by the construction. Similar to Definition 5 of [Suppes] p. 162. (Contributed by NM, 13-Feb-1996.) (New usage is discouraged.) |
⊢ <Q = ( <pQ ∩ (Q × Q)) | ||
Theorem | enqbreq 10684 | Equivalence relation for positive fractions in terms of positive integers. (Contributed by NM, 27-Aug-1995.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → (〈𝐴, 𝐵〉 ~Q 〈𝐶, 𝐷〉 ↔ (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶))) | ||
Theorem | enqbreq2 10685 | Equivalence relation for positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) = ((1st ‘𝐵) ·N (2nd ‘𝐴)))) | ||
Theorem | enqer 10686 | The equivalence relation for positive fractions is an equivalence relation. Proposition 9-2.1 of [Gleason] p. 117. (Contributed by NM, 27-Aug-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) (New usage is discouraged.) |
⊢ ~Q Er (N × N) | ||
Theorem | enqex 10687 | The equivalence relation for positive fractions exists. (Contributed by NM, 3-Sep-1995.) (New usage is discouraged.) |
⊢ ~Q ∈ V | ||
Theorem | nqex 10688 | The class of positive fractions exists. (Contributed by NM, 16-Aug-1995.) (Revised by Mario Carneiro, 27-Apr-2013.) (New usage is discouraged.) |
⊢ Q ∈ V | ||
Theorem | 0nnq 10689 | The empty set is not a positive fraction. (Contributed by NM, 24-Aug-1995.) (Revised by Mario Carneiro, 27-Apr-2013.) (New usage is discouraged.) |
⊢ ¬ ∅ ∈ Q | ||
Theorem | elpqn 10690 | Each positive fraction is an ordered pair of positive integers (the numerator and denominator, in "lowest terms". (Contributed by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) | ||
Theorem | ltrelnq 10691 | Positive fraction 'less than' is a relation on positive fractions. (Contributed by NM, 14-Feb-1996.) (Revised by Mario Carneiro, 27-Apr-2013.) (New usage is discouraged.) |
⊢ <Q ⊆ (Q × Q) | ||
Theorem | pinq 10692 | The representatives of positive integers as positive fractions. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 6-May-2013.) (New usage is discouraged.) |
⊢ (𝐴 ∈ N → 〈𝐴, 1o〉 ∈ Q) | ||
Theorem | 1nq 10693 | The positive fraction 'one'. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
⊢ 1Q ∈ Q | ||
Theorem | nqereu 10694* | There is a unique element of Q equivalent to each element of N × N. (Contributed by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
⊢ (𝐴 ∈ (N × N) → ∃!𝑥 ∈ Q 𝑥 ~Q 𝐴) | ||
Theorem | nqerf 10695 | Corollary of nqereu 10694: the function [Q] is actually a function. (Contributed by Mario Carneiro, 6-May-2013.) (New usage is discouraged.) |
⊢ [Q]:(N × N)⟶Q | ||
Theorem | nqercl 10696 | Corollary of nqereu 10694: closure of [Q]. (Contributed by Mario Carneiro, 6-May-2013.) (New usage is discouraged.) |
⊢ (𝐴 ∈ (N × N) → ([Q]‘𝐴) ∈ Q) | ||
Theorem | nqerrel 10697 | Any member of (N × N) relates to the representative of its equivalence class. (Contributed by Mario Carneiro, 6-May-2013.) (New usage is discouraged.) |
⊢ (𝐴 ∈ (N × N) → 𝐴 ~Q ([Q]‘𝐴)) | ||
Theorem | nqerid 10698 | Corollary of nqereu 10694: the function [Q] acts as the identity on members of Q. (Contributed by Mario Carneiro, 6-May-2013.) (New usage is discouraged.) |
⊢ (𝐴 ∈ Q → ([Q]‘𝐴) = 𝐴) | ||
Theorem | enqeq 10699 | Corollary of nqereu 10694: if two fractions are both reduced and equivalent, then they are equal. (Contributed by Mario Carneiro, 6-May-2013.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → 𝐴 = 𝐵) | ||
Theorem | nqereq 10700 | The function [Q] acts as a substitute for equivalence classes, and it satisfies the fundamental requirement for equivalence representatives: the representatives are equal iff the members are equivalent. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ([Q]‘𝐴) = ([Q]‘𝐵))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |