| Metamath
Proof Explorer Theorem List (p. 107 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | fpwwe2lem11 10601* | Lemma for fpwwe2 10603. (Contributed by Mario Carneiro, 18-May-2015.) (Proof shortened by Peter Mazsa, 23-Sep-2022.) (Revised by AV, 20-Jul-2024.) |
| ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) & ⊢ 𝑋 = ∪ dom 𝑊 ⇒ ⊢ (𝜑 → 𝑋 ∈ dom 𝑊) | ||
| Theorem | fpwwe2lem12 10602* | Lemma for fpwwe2 10603. (Contributed by Mario Carneiro, 18-May-2015.) (Revised by AV, 20-Jul-2024.) |
| ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) & ⊢ 𝑋 = ∪ dom 𝑊 ⇒ ⊢ (𝜑 → (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) | ||
| Theorem | fpwwe2 10603* | Given any function 𝐹 from well-orderings of subsets of 𝐴 to 𝐴, there is a unique well-ordered subset 〈𝑋, (𝑊‘𝑋)〉 which "agrees" with 𝐹 in the sense that each initial segment maps to its upper bound, and such that the entire set maps to an element of the set (so that it cannot be extended without losing the well-ordering). This theorem can be used to prove dfac8a 9990. Theorem 1.1 of [KanamoriPincus] p. 415. (Contributed by Mario Carneiro, 18-May-2015.) (Revised by AV, 20-Jul-2024.) |
| ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) & ⊢ 𝑋 = ∪ dom 𝑊 ⇒ ⊢ (𝜑 → ((𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌) ↔ (𝑌 = 𝑋 ∧ 𝑅 = (𝑊‘𝑋)))) | ||
| Theorem | fpwwecbv 10604* | Lemma for fpwwe 10606. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘(◡𝑟 “ {𝑦})) = 𝑦))} ⇒ ⊢ 𝑊 = {〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 (𝐹‘(◡𝑠 “ {𝑧})) = 𝑧))} | ||
| Theorem | fpwwelem 10605* | Lemma for fpwwe 10606. (Contributed by Mario Carneiro, 15-May-2015.) (Revised by AV, 20-Jul-2024.) |
| ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘(◡𝑟 “ {𝑦})) = 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋𝑊𝑅 ↔ ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 (𝐹‘(◡𝑅 “ {𝑦})) = 𝑦)))) | ||
| Theorem | fpwwe 10606* | Given any function 𝐹 from the powerset of 𝐴 to 𝐴, canth2 9100 gives that the function is not injective, but we can say rather more than that. There is a unique well-ordered subset 〈𝑋, (𝑊‘𝑋)〉 which "agrees" with 𝐹 in the sense that each initial segment maps to its upper bound, and such that the entire set maps to an element of the set (so that it cannot be extended without losing the well-ordering). This theorem can be used to prove dfac8a 9990. Theorem 1.1 of [KanamoriPincus] p. 415. (Contributed by Mario Carneiro, 18-May-2015.) (Revised by AV, 20-Jul-2024.) |
| ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘(◡𝑟 “ {𝑦})) = 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ dom card)) → (𝐹‘𝑥) ∈ 𝐴) & ⊢ 𝑋 = ∪ dom 𝑊 ⇒ ⊢ (𝜑 → ((𝑌𝑊𝑅 ∧ (𝐹‘𝑌) ∈ 𝑌) ↔ (𝑌 = 𝑋 ∧ 𝑅 = (𝑊‘𝑋)))) | ||
| Theorem | canth4 10607* | An "effective" form of Cantor's theorem canth 7344. For any function 𝐹 from the powerset of 𝐴 to 𝐴, there are two definable sets 𝐵 and 𝐶 which witness non-injectivity of 𝐹. Corollary 1.3 of [KanamoriPincus] p. 416. (Contributed by Mario Carneiro, 18-May-2015.) |
| ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘(◡𝑟 “ {𝑦})) = 𝑦))} & ⊢ 𝐵 = ∪ dom 𝑊 & ⊢ 𝐶 = (◡(𝑊‘𝐵) “ {(𝐹‘𝐵)}) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐷⟶𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝐵 ⊆ 𝐴 ∧ 𝐶 ⊊ 𝐵 ∧ (𝐹‘𝐵) = (𝐹‘𝐶))) | ||
| Theorem | canthnumlem 10608* | Lemma for canthnum 10609. (Contributed by Mario Carneiro, 19-May-2015.) |
| ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘(◡𝑟 “ {𝑦})) = 𝑦))} & ⊢ 𝐵 = ∪ dom 𝑊 & ⊢ 𝐶 = (◡(𝑊‘𝐵) “ {(𝐹‘𝐵)}) ⇒ ⊢ (𝐴 ∈ 𝑉 → ¬ 𝐹:(𝒫 𝐴 ∩ dom card)–1-1→𝐴) | ||
| Theorem | canthnum 10609 | The set of well-orderable subsets of a set 𝐴 strictly dominates 𝐴. A stronger form of canth2 9100. Corollary 1.4(a) of [KanamoriPincus] p. 417. (Contributed by Mario Carneiro, 19-May-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≺ (𝒫 𝐴 ∩ dom card)) | ||
| Theorem | canthwelem 10610* | Lemma for canthwe 10611. (Contributed by Mario Carneiro, 31-May-2015.) |
| ⊢ 𝑂 = {〈𝑥, 𝑟〉 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)} & ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} & ⊢ 𝐵 = ∪ dom 𝑊 & ⊢ 𝐶 = (◡(𝑊‘𝐵) “ {(𝐵𝐹(𝑊‘𝐵))}) ⇒ ⊢ (𝐴 ∈ 𝑉 → ¬ 𝐹:𝑂–1-1→𝐴) | ||
| Theorem | canthwe 10611* | The set of well-orders of a set 𝐴 strictly dominates 𝐴. A stronger form of canth2 9100. Corollary 1.4(b) of [KanamoriPincus] p. 417. (Contributed by Mario Carneiro, 31-May-2015.) |
| ⊢ 𝑂 = {〈𝑥, 𝑟〉 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)} ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≺ 𝑂) | ||
| Theorem | canthp1lem1 10612 | Lemma for canthp1 10614. (Contributed by Mario Carneiro, 18-May-2015.) |
| ⊢ (1o ≺ 𝐴 → (𝐴 ⊔ 2o) ≼ 𝒫 𝐴) | ||
| Theorem | canthp1lem2 10613* | Lemma for canthp1 10614. (Contributed by Mario Carneiro, 18-May-2015.) |
| ⊢ (𝜑 → 1o ≺ 𝐴) & ⊢ (𝜑 → 𝐹:𝒫 𝐴–1-1-onto→(𝐴 ⊔ 1o)) & ⊢ (𝜑 → 𝐺:((𝐴 ⊔ 1o) ∖ {(𝐹‘𝐴)})–1-1-onto→𝐴) & ⊢ 𝐻 = ((𝐺 ∘ 𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))) & ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝐻‘(◡𝑟 “ {𝑦})) = 𝑦))} & ⊢ 𝐵 = ∪ dom 𝑊 ⇒ ⊢ ¬ 𝜑 | ||
| Theorem | canthp1 10614 | A slightly stronger form of Cantor's theorem: For 1 < 𝑛, 𝑛 + 1 < 2↑𝑛. Corollary 1.6 of [KanamoriPincus] p. 417. (Contributed by Mario Carneiro, 18-May-2015.) |
| ⊢ (1o ≺ 𝐴 → (𝐴 ⊔ 1o) ≺ 𝒫 𝐴) | ||
| Theorem | finngch 10615 | The exclusion of finite sets from consideration in df-gch 10581 is necessary, because otherwise finite sets larger than a singleton would violate the GCH property. (Contributed by Mario Carneiro, 10-Jun-2015.) |
| ⊢ ((𝐴 ∈ Fin ∧ 1o ≺ 𝐴) → (𝐴 ≺ (𝐴 ⊔ 1o) ∧ (𝐴 ⊔ 1o) ≺ 𝒫 𝐴)) | ||
| Theorem | gchdju1 10616 | An infinite GCH-set is idempotent under cardinal successor. (Contributed by Mario Carneiro, 18-May-2015.) |
| ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ⊔ 1o) ≈ 𝐴) | ||
| Theorem | gchinf 10617 | An infinite GCH-set is Dedekind-infinite. (Contributed by Mario Carneiro, 31-May-2015.) |
| ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ω ≼ 𝐴) | ||
| Theorem | pwfseqlem1 10618* | Lemma for pwfseq 10624. Derive a contradiction by diagonalization. (Contributed by Mario Carneiro, 31-May-2015.) |
| ⊢ (𝜑 → 𝐺:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) & ⊢ (𝜑 → 𝑋 ⊆ 𝐴) & ⊢ (𝜑 → 𝐻:ω–1-1-onto→𝑋) & ⊢ (𝜓 ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥)) & ⊢ ((𝜑 ∧ 𝜓) → 𝐾:∪ 𝑛 ∈ ω (𝑥 ↑m 𝑛)–1-1→𝑥) & ⊢ 𝐷 = (𝐺‘{𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))}) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝐷 ∈ (∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛) ∖ ∪ 𝑛 ∈ ω (𝑥 ↑m 𝑛))) | ||
| Theorem | pwfseqlem2 10619* | Lemma for pwfseq 10624. (Contributed by Mario Carneiro, 18-Nov-2014.) (Revised by AV, 18-Sep-2021.) |
| ⊢ (𝜑 → 𝐺:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) & ⊢ (𝜑 → 𝑋 ⊆ 𝐴) & ⊢ (𝜑 → 𝐻:ω–1-1-onto→𝑋) & ⊢ (𝜓 ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥)) & ⊢ ((𝜑 ∧ 𝜓) → 𝐾:∪ 𝑛 ∈ ω (𝑥 ↑m 𝑛)–1-1→𝑥) & ⊢ 𝐷 = (𝐺‘{𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))}) & ⊢ 𝐹 = (𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬ (𝐷‘𝑧) ∈ 𝑥}))) ⇒ ⊢ ((𝑌 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑌𝐹𝑅) = (𝐻‘(card‘𝑌))) | ||
| Theorem | pwfseqlem3 10620* | Lemma for pwfseq 10624. Using the construction 𝐷 from pwfseqlem1 10618, produce a function 𝐹 that maps any well-ordered infinite set to an element outside the set. (Contributed by Mario Carneiro, 31-May-2015.) |
| ⊢ (𝜑 → 𝐺:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) & ⊢ (𝜑 → 𝑋 ⊆ 𝐴) & ⊢ (𝜑 → 𝐻:ω–1-1-onto→𝑋) & ⊢ (𝜓 ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥)) & ⊢ ((𝜑 ∧ 𝜓) → 𝐾:∪ 𝑛 ∈ ω (𝑥 ↑m 𝑛)–1-1→𝑥) & ⊢ 𝐷 = (𝐺‘{𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))}) & ⊢ 𝐹 = (𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬ (𝐷‘𝑧) ∈ 𝑥}))) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (𝑥𝐹𝑟) ∈ (𝐴 ∖ 𝑥)) | ||
| Theorem | pwfseqlem4a 10621* | Lemma for pwfseqlem4 10622. (Contributed by Mario Carneiro, 7-Jun-2016.) |
| ⊢ (𝜑 → 𝐺:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) & ⊢ (𝜑 → 𝑋 ⊆ 𝐴) & ⊢ (𝜑 → 𝐻:ω–1-1-onto→𝑋) & ⊢ (𝜓 ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥)) & ⊢ ((𝜑 ∧ 𝜓) → 𝐾:∪ 𝑛 ∈ ω (𝑥 ↑m 𝑛)–1-1→𝑥) & ⊢ 𝐷 = (𝐺‘{𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))}) & ⊢ 𝐹 = (𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬ (𝐷‘𝑧) ∈ 𝑥}))) ⇒ ⊢ ((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (𝑎𝐹𝑠) ∈ 𝐴) | ||
| Theorem | pwfseqlem4 10622* | Lemma for pwfseq 10624. Derive a final contradiction from the function 𝐹 in pwfseqlem3 10620. Applying fpwwe2 10603 to it, we get a certain maximal well-ordered subset 𝑍, but the defining property (𝑍𝐹(𝑊‘𝑍)) ∈ 𝑍 contradicts our assumption on 𝐹, so we are reduced to the case of 𝑍 finite. This too is a contradiction, though, because 𝑍 and its preimage under (𝑊‘𝑍) are distinct sets of the same cardinality and in a subset relation, which is impossible for finite sets. (Contributed by Mario Carneiro, 31-May-2015.) (Proof shortened by Matthew House, 10-Sep-2025.) |
| ⊢ (𝜑 → 𝐺:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) & ⊢ (𝜑 → 𝑋 ⊆ 𝐴) & ⊢ (𝜑 → 𝐻:ω–1-1-onto→𝑋) & ⊢ (𝜓 ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥)) & ⊢ ((𝜑 ∧ 𝜓) → 𝐾:∪ 𝑛 ∈ ω (𝑥 ↑m 𝑛)–1-1→𝑥) & ⊢ 𝐷 = (𝐺‘{𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))}) & ⊢ 𝐹 = (𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬ (𝐷‘𝑧) ∈ 𝑥}))) & ⊢ 𝑊 = {〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑏 ∈ 𝑎 [(◡𝑠 “ {𝑏}) / 𝑣](𝑣𝐹(𝑠 ∩ (𝑣 × 𝑣))) = 𝑏))} & ⊢ 𝑍 = ∪ dom 𝑊 ⇒ ⊢ ¬ 𝜑 | ||
| Theorem | pwfseqlem5 10623* |
Lemma for pwfseq 10624. Although in some ways pwfseqlem4 10622 is the "main"
part of the proof, one last aspect which makes up a remark in the
original text is by far the hardest part to formalize. The main proof
relies on the existence of an injection 𝐾 from the set of finite
sequences on an infinite set 𝑥 to 𝑥. Now this alone would
not
be difficult to prove; this is mostly the claim of fseqen 9987. However,
what is needed for the proof is a canonical injection on these
sets,
so we have to start from scratch pulling together explicit bijections
from the lemmas.
If one attempts such a program, it will mostly go through, but there is one key step which is inherently nonconstructive, namely the proof of infxpen 9974. The resolution is not obvious, but it turns out that reversing an infinite ordinal's Cantor normal form absorbs all the non-leading terms (cnfcom3c 9666), which can be used to construct a pairing function explicitly using properties of the ordinal exponential (infxpenc 9978). (Contributed by Mario Carneiro, 31-May-2015.) |
| ⊢ (𝜑 → 𝐺:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) & ⊢ (𝜑 → 𝑋 ⊆ 𝐴) & ⊢ (𝜑 → 𝐻:ω–1-1-onto→𝑋) & ⊢ (𝜓 ↔ ((𝑡 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑡 × 𝑡) ∧ 𝑟 We 𝑡) ∧ ω ≼ 𝑡)) & ⊢ (𝜑 → ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑁‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏)) & ⊢ 𝑂 = OrdIso(𝑟, 𝑡) & ⊢ 𝑇 = (𝑢 ∈ dom 𝑂, 𝑣 ∈ dom 𝑂 ↦ 〈(𝑂‘𝑢), (𝑂‘𝑣)〉) & ⊢ 𝑃 = ((𝑂 ∘ (𝑁‘dom 𝑂)) ∘ ◡𝑇) & ⊢ 𝑆 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝑡 ↑m suc 𝑘) ↦ ((𝑓‘(𝑥 ↾ 𝑘))𝑃(𝑥‘𝑘)))), {〈∅, (𝑂‘∅)〉}) & ⊢ 𝑄 = (𝑦 ∈ ∪ 𝑛 ∈ ω (𝑡 ↑m 𝑛) ↦ 〈dom 𝑦, ((𝑆‘dom 𝑦)‘𝑦)〉) & ⊢ 𝐼 = (𝑥 ∈ ω, 𝑦 ∈ 𝑡 ↦ 〈(𝑂‘𝑥), 𝑦〉) & ⊢ 𝐾 = ((𝑃 ∘ 𝐼) ∘ 𝑄) ⇒ ⊢ ¬ 𝜑 | ||
| Theorem | pwfseq 10624* | The powerset of a Dedekind-infinite set does not inject into the set of finite sequences. The proof is due to Halbeisen and Shelah. Proposition 1.7 of [KanamoriPincus] p. 418. (Contributed by Mario Carneiro, 31-May-2015.) |
| ⊢ (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ ∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) | ||
| Theorem | pwxpndom2 10625 | The powerset of a Dedekind-infinite set does not inject into its Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015.) (Proof shortened by AV, 18-Jul-2022.) |
| ⊢ (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴))) | ||
| Theorem | pwxpndom 10626 | The powerset of a Dedekind-infinite set does not inject into its Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015.) |
| ⊢ (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 × 𝐴)) | ||
| Theorem | pwdjundom 10627 | The powerset of a Dedekind-infinite set does not inject into its cardinal sum with itself. (Contributed by Mario Carneiro, 31-May-2015.) |
| ⊢ (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 ⊔ 𝐴)) | ||
| Theorem | gchdjuidm 10628 | An infinite GCH-set is idempotent under cardinal sum. Part of Lemma 2.2 of [KanamoriPincus] p. 419. (Contributed by Mario Carneiro, 31-May-2015.) |
| ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ⊔ 𝐴) ≈ 𝐴) | ||
| Theorem | gchxpidm 10629 | An infinite GCH-set is idempotent under cardinal product. Part of Lemma 2.2 of [KanamoriPincus] p. 419. (Contributed by Mario Carneiro, 31-May-2015.) |
| ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ≈ 𝐴) | ||
| Theorem | gchpwdom 10630 | A relationship between dominance over the powerset and strict dominance when the sets involved are infinite GCH-sets. Proposition 3.1 of [KanamoriPincus] p. 421. (Contributed by Mario Carneiro, 31-May-2015.) |
| ⊢ ((ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) → (𝐴 ≺ 𝐵 ↔ 𝒫 𝐴 ≼ 𝐵)) | ||
| Theorem | gchaleph 10631 | If (ℵ‘𝐴) is a GCH-set and its powerset is well-orderable, then the successor aleph (ℵ‘suc 𝐴) is equinumerous to the powerset of (ℵ‘𝐴). (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → (ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴)) | ||
| Theorem | gchaleph2 10632 | If (ℵ‘𝐴) and (ℵ‘suc 𝐴) are GCH-sets, then the successor aleph (ℵ‘suc 𝐴) is equinumerous to the powerset of (ℵ‘𝐴). (Contributed by Mario Carneiro, 31-May-2015.) |
| ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → (ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴)) | ||
| Theorem | hargch 10633 | If 𝐴 + ≈ 𝒫 𝐴, then 𝐴 is a GCH-set. The much simpler converse to gchhar 10639. (Contributed by Mario Carneiro, 2-Jun-2015.) |
| ⊢ ((har‘𝐴) ≈ 𝒫 𝐴 → 𝐴 ∈ GCH) | ||
| Theorem | alephgch 10634 | If (ℵ‘suc 𝐴) is equinumerous to the powerset of (ℵ‘𝐴), then (ℵ‘𝐴) is a GCH-set. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ ((ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴) → (ℵ‘𝐴) ∈ GCH) | ||
| Theorem | gch2 10635 | It is sufficient to require that all alephs are GCH-sets to ensure the full generalized continuum hypothesis. (The proof uses the Axiom of Regularity.) (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ (GCH = V ↔ ran ℵ ⊆ GCH) | ||
| Theorem | gch3 10636 | An equivalent formulation of the generalized continuum hypothesis. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ (GCH = V ↔ ∀𝑥 ∈ On (ℵ‘suc 𝑥) ≈ 𝒫 (ℵ‘𝑥)) | ||
| Theorem | gch-kn 10637* | The equivalence of two versions of the Generalized Continuum Hypothesis. The right-hand side is the standard version in the literature. The left-hand side is a version devised by Kannan Nambiar, which he calls the Axiom of Combinatorial Sets. For the notation and motivation behind this axiom, see his paper, "Derivation of Continuum Hypothesis from Axiom of Combinatorial Sets", available at http://www.e-atheneum.net/science/derivation_ch.pdf. The equivalence of the two sides provides a negative answer to Open Problem 2 in http://www.e-atheneum.net/science/open_problem_print.pdf. The key idea in the proof below is to equate both sides of alephexp2 10541 to the successor aleph using enen2 9088. (Contributed by NM, 1-Oct-2004.) |
| ⊢ (𝐴 ∈ On → ((ℵ‘suc 𝐴) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))} ↔ (ℵ‘suc 𝐴) ≈ (2o ↑m (ℵ‘𝐴)))) | ||
| Theorem | gchaclem 10638 | Lemma for gchac 10641 (obsolete, used in Sierpiński's proof). (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ (𝜑 → ω ≼ 𝐴) & ⊢ (𝜑 → 𝒫 𝐶 ∈ GCH) & ⊢ (𝜑 → (𝐴 ≼ 𝐶 ∧ (𝐵 ≼ 𝒫 𝐶 → 𝒫 𝐴 ≼ 𝐵))) ⇒ ⊢ (𝜑 → (𝐴 ≼ 𝒫 𝐶 ∧ (𝐵 ≼ 𝒫 𝒫 𝐶 → 𝒫 𝐴 ≼ 𝐵))) | ||
| Theorem | gchhar 10639 | A "local" form of gchac 10641. If 𝐴 and 𝒫 𝐴 are GCH-sets, then the Hartogs number of 𝐴 is 𝒫 𝐴 (so 𝒫 𝐴 and a fortiori 𝐴 are well-orderable). The proof is due to Specker. Theorem 2.1 of [KanamoriPincus] p. 419. (Contributed by Mario Carneiro, 31-May-2015.) |
| ⊢ ((ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ≈ 𝒫 𝐴) | ||
| Theorem | gchacg 10640 | A "local" form of gchac 10641. If 𝐴 and 𝒫 𝐴 are GCH-sets, then 𝒫 𝐴 is well-orderable. The proof is due to Specker. Theorem 2.1 of [KanamoriPincus] p. 419. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ ((ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝐴 ∈ dom card) | ||
| Theorem | gchac 10641 | The Generalized Continuum Hypothesis implies the Axiom of Choice. The original proof is due to Sierpiński (1947); we use a refinement of Sierpiński's result due to Specker. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ (GCH = V → CHOICE) | ||
Here we introduce Tarski-Grothendieck (TG) set theory, named after mathematicians Alfred Tarski and Alexander Grothendieck. TG theory extends ZFC with the TG Axiom ax-groth 10783, which states that for every set 𝑥 there is an inaccessible cardinal 𝑦 such that 𝑦 is not in 𝑥. The addition of this axiom to ZFC set theory provides a framework for category theory, thus for all practical purposes giving us a complete foundation for "all of mathematics". We first introduce the concept of inaccessibles, including weakly and strongly inaccessible cardinals (df-wina 10644 and df-ina 10645 respectively ), Tarski classes (df-tsk 10709), and Grothendieck universes (df-gru 10751). We then introduce the Tarski's axiom ax-groth 10783 and prove various properties from that. | ||
| Syntax | cwina 10642 | The class of weak inaccessibles. |
| class Inaccw | ||
| Syntax | cina 10643 | The class of strong inaccessibles. |
| class Inacc | ||
| Definition | df-wina 10644* | An ordinal is weakly inaccessible iff it is a regular limit cardinal. Note that our definition allows ω as a weakly inaccessible cardinal. (Contributed by Mario Carneiro, 22-Jun-2013.) |
| ⊢ Inaccw = {𝑥 ∣ (𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝑥 𝑦 ≺ 𝑧)} | ||
| Definition | df-ina 10645* | An ordinal is strongly inaccessible iff it is a regular strong limit cardinal, which is to say that it dominates the powersets of every smaller ordinal. (Contributed by Mario Carneiro, 22-Jun-2013.) |
| ⊢ Inacc = {𝑥 ∣ (𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑥 𝒫 𝑦 ≺ 𝑥)} | ||
| Theorem | elwina 10646* | Conditions of weak inaccessibility. (Contributed by Mario Carneiro, 22-Jun-2013.) |
| ⊢ (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) | ||
| Theorem | elina 10647* | Conditions of strong inaccessibility. (Contributed by Mario Carneiro, 22-Jun-2013.) |
| ⊢ (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴)) | ||
| Theorem | winaon 10648 | A weakly inaccessible cardinal is an ordinal. (Contributed by Mario Carneiro, 29-May-2014.) |
| ⊢ (𝐴 ∈ Inaccw → 𝐴 ∈ On) | ||
| Theorem | inawinalem 10649* | Lemma for inawina 10650. (Contributed by Mario Carneiro, 8-Jun-2014.) |
| ⊢ (𝐴 ∈ On → (∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) | ||
| Theorem | inawina 10650 | Every strongly inaccessible cardinal is weakly inaccessible. (Contributed by Mario Carneiro, 29-May-2014.) |
| ⊢ (𝐴 ∈ Inacc → 𝐴 ∈ Inaccw) | ||
| Theorem | omina 10651 | ω is a strongly inaccessible cardinal. (Many definitions of "inaccessible" explicitly disallow ω as an inaccessible cardinal, but this choice allows to reuse our results for inaccessibles for ω.) (Contributed by Mario Carneiro, 29-May-2014.) |
| ⊢ ω ∈ Inacc | ||
| Theorem | winacard 10652 | A weakly inaccessible cardinal is a cardinal. (Contributed by Mario Carneiro, 29-May-2014.) |
| ⊢ (𝐴 ∈ Inaccw → (card‘𝐴) = 𝐴) | ||
| Theorem | winainflem 10653* | A weakly inaccessible cardinal is infinite. (Contributed by Mario Carneiro, 29-May-2014.) |
| ⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦) → ω ⊆ 𝐴) | ||
| Theorem | winainf 10654 | A weakly inaccessible cardinal is infinite. (Contributed by Mario Carneiro, 29-May-2014.) |
| ⊢ (𝐴 ∈ Inaccw → ω ⊆ 𝐴) | ||
| Theorem | winalim 10655 | A weakly inaccessible cardinal is a limit ordinal. (Contributed by Mario Carneiro, 29-May-2014.) |
| ⊢ (𝐴 ∈ Inaccw → Lim 𝐴) | ||
| Theorem | winalim2 10656* | A nontrivial weakly inaccessible cardinal is a limit aleph. (Contributed by Mario Carneiro, 29-May-2014.) |
| ⊢ ((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) → ∃𝑥((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) | ||
| Theorem | winafp 10657 | A nontrivial weakly inaccessible cardinal is a fixed point of the aleph function. (Contributed by Mario Carneiro, 29-May-2014.) |
| ⊢ ((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) → (ℵ‘𝐴) = 𝐴) | ||
| Theorem | winafpi 10658 | This theorem, which states that a nontrivial inaccessible cardinal is its own aleph number, is stated here in inference form, where the assumptions are in the hypotheses rather than an antecedent. Often, we use dedth 4550 to turn this type of statement into the closed form statement winafp 10657, but in this case, since it is consistent with ZFC that there are no nontrivial inaccessible cardinals, it is not possible to prove winafp 10657 using this theorem and dedth 4550, in ZFC. (You can prove this if you use ax-groth 10783, though.) (Contributed by Mario Carneiro, 28-May-2014.) |
| ⊢ 𝐴 ∈ Inaccw & ⊢ 𝐴 ≠ ω ⇒ ⊢ (ℵ‘𝐴) = 𝐴 | ||
| Theorem | gchina 10659 | Assuming the GCH, weakly and strongly inaccessible cardinals coincide. Theorem 11.20 of [TakeutiZaring] p. 106. (Contributed by Mario Carneiro, 5-Jun-2015.) |
| ⊢ (GCH = V → Inaccw = Inacc) | ||
| Syntax | cwun 10660 | Extend class definition to include the class of all weak universes. |
| class WUni | ||
| Syntax | cwunm 10661 | Extend class definition to include the map whose value is the smallest weak universe of which the given set is a subset. |
| class wUniCl | ||
| Definition | df-wun 10662* | The class of all weak universes. A weak universe is a nonempty transitive class closed under union, pairing, and powerset. The advantage of weak universes over Grothendieck universes is that one can prove that every set is contained in a weak universe in ZF (see uniwun 10700) whereas the analogue for Grothendieck universes requires ax-groth 10783 (see grothtsk 10795). (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ WUni = {𝑢 ∣ (Tr 𝑢 ∧ 𝑢 ≠ ∅ ∧ ∀𝑥 ∈ 𝑢 (∪ 𝑥 ∈ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢))} | ||
| Definition | df-wunc 10663* | A function that maps a set 𝑥 to the smallest weak universe that contains the elements of the set. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ wUniCl = (𝑥 ∈ V ↦ ∩ {𝑢 ∈ WUni ∣ 𝑥 ⊆ 𝑢}) | ||
| Theorem | iswun 10664* | Properties of a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∈ WUni ↔ (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)))) | ||
| Theorem | wuntr 10665 | A weak universe is transitive. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ (𝑈 ∈ WUni → Tr 𝑈) | ||
| Theorem | wununi 10666 | A weak universe is closed under union. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → ∪ 𝐴 ∈ 𝑈) | ||
| Theorem | wunpw 10667 | A weak universe is closed under powerset. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝒫 𝐴 ∈ 𝑈) | ||
| Theorem | wunelss 10668 | The elements of a weak universe are also subsets of it. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝑈) | ||
| Theorem | wunpr 10669 | A weak universe is closed under pairing. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) ⇒ ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) | ||
| Theorem | wunun 10670 | A weak universe is closed under binary union. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ 𝑈) | ||
| Theorem | wuntp 10671 | A weak universe is closed under unordered triple. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) ⇒ ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ∈ 𝑈) | ||
| Theorem | wunss 10672 | A weak universe is closed under subsets. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝑈) | ||
| Theorem | wunin 10673 | A weak universe is closed under binary intersections. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐵) ∈ 𝑈) | ||
| Theorem | wundif 10674 | A weak universe is closed under class difference. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ 𝑈) | ||
| Theorem | wunint 10675 | A weak universe is closed under nonempty intersections. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ 𝑈) | ||
| Theorem | wunsn 10676 | A weak universe is closed under singletons. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → {𝐴} ∈ 𝑈) | ||
| Theorem | wunsuc 10677 | A weak universe is closed under successors. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → suc 𝐴 ∈ 𝑈) | ||
| Theorem | wun0 10678 | A weak universe contains the empty set. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ (𝜑 → 𝑈 ∈ WUni) ⇒ ⊢ (𝜑 → ∅ ∈ 𝑈) | ||
| Theorem | wunr1om 10679 | A weak universe is infinite, because it contains all the finite levels of the cumulative hierarchy. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ (𝜑 → 𝑈 ∈ WUni) ⇒ ⊢ (𝜑 → (𝑅1 “ ω) ⊆ 𝑈) | ||
| Theorem | wunom 10680 | A weak universe contains all the finite ordinals, and hence is infinite. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ (𝜑 → 𝑈 ∈ WUni) ⇒ ⊢ (𝜑 → ω ⊆ 𝑈) | ||
| Theorem | wunfi 10681 | A weak universe contains all finite sets with elements drawn from the universe. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ⊆ 𝑈) & ⊢ (𝜑 → 𝐴 ∈ Fin) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝑈) | ||
| Theorem | wunop 10682 | A weak universe is closed under ordered pairs. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) ⇒ ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ 𝑈) | ||
| Theorem | wunot 10683 | A weak universe is closed under ordered triples. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) ⇒ ⊢ (𝜑 → 〈𝐴, 𝐵, 𝐶〉 ∈ 𝑈) | ||
| Theorem | wunxp 10684 | A weak universe is closed under cartesian products. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝐴 × 𝐵) ∈ 𝑈) | ||
| Theorem | wunpm 10685 | A weak universe is closed under partial mappings. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝐴 ↑pm 𝐵) ∈ 𝑈) | ||
| Theorem | wunmap 10686 | A weak universe is closed under mappings. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝐴 ↑m 𝐵) ∈ 𝑈) | ||
| Theorem | wunf 10687 | A weak universe is closed under functions with known domain and codomain. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → 𝐹 ∈ 𝑈) | ||
| Theorem | wundm 10688 | A weak universe is closed under the domain operator. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → dom 𝐴 ∈ 𝑈) | ||
| Theorem | wunrn 10689 | A weak universe is closed under the range operator. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → ran 𝐴 ∈ 𝑈) | ||
| Theorem | wuncnv 10690 | A weak universe is closed under the converse operator. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → ◡𝐴 ∈ 𝑈) | ||
| Theorem | wunres 10691 | A weak universe is closed under restrictions. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝐴 ↾ 𝐵) ∈ 𝑈) | ||
| Theorem | wunfv 10692 | A weak universe is closed under the function value operator. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝐴‘𝐵) ∈ 𝑈) | ||
| Theorem | wunco 10693 | A weak universe is closed under composition. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝐴 ∘ 𝐵) ∈ 𝑈) | ||
| Theorem | wuntpos 10694 | A weak universe is closed under transposition. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → tpos 𝐴 ∈ 𝑈) | ||
| Theorem | intwun 10695 | The intersection of a collection of weak universes is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ ((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ WUni) | ||
| Theorem | r1limwun 10696 | Each limit stage in the cumulative hierarchy is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) → (𝑅1‘𝐴) ∈ WUni) | ||
| Theorem | r1wunlim 10697 | The weak universes in the cumulative hierarchy are exactly the limit ordinals. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ (𝐴 ∈ 𝑉 → ((𝑅1‘𝐴) ∈ WUni ↔ Lim 𝐴)) | ||
| Theorem | wunex2 10698* | Construct a weak universe from a given set. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ 𝐹 = (rec((𝑧 ∈ V ↦ ((𝑧 ∪ ∪ 𝑧) ∪ ∪ 𝑥 ∈ 𝑧 ({𝒫 𝑥, ∪ 𝑥} ∪ ran (𝑦 ∈ 𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω) & ⊢ 𝑈 = ∪ ran 𝐹 ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝑈 ∈ WUni ∧ 𝐴 ⊆ 𝑈)) | ||
| Theorem | wunex 10699* | Construct a weak universe from a given set. See also wunex2 10698. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ (𝐴 ∈ 𝑉 → ∃𝑢 ∈ WUni 𝐴 ⊆ 𝑢) | ||
| Theorem | uniwun 10700 | Every set is contained in a weak universe. This is the analogue of grothtsk 10795 for weak universes, but it is provable in ZF without the Tarski-Grothendieck axiom, contrary to grothtsk 10795. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| ⊢ ∪ WUni = V | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |