| Metamath
Proof Explorer Theorem List (p. 107 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | nd3 10601 | A lemma for proving conditionless ZFC axioms. (Contributed by NM, 2-Jan-2002.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑧 𝑥 ∈ 𝑦) | ||
| Theorem | nd4 10602 | A lemma for proving conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 2376. (Contributed by NM, 2-Jan-2002.) (New usage is discouraged.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑧 𝑦 ∈ 𝑥) | ||
| Theorem | axextnd 10603 | A version of the Axiom of Extensionality with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2376. (Contributed by NM, 14-Aug-2003.) (New usage is discouraged.) |
| ⊢ ∃𝑥((𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧) → 𝑦 = 𝑧) | ||
| Theorem | axrepndlem1 10604* | Lemma for the Axiom of Replacement with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2376. (Contributed by NM, 2-Jan-2002.) (New usage is discouraged.) |
| ⊢ (¬ ∀𝑦 𝑦 = 𝑧 → ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)))) | ||
| Theorem | axrepndlem2 10605 | Lemma for the Axiom of Replacement with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2376. (Contributed by NM, 2-Jan-2002.) (Proof shortened by Mario Carneiro, 6-Dec-2016.) (New usage is discouraged.) |
| ⊢ (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)))) | ||
| Theorem | axrepnd 10606 | A version of the Axiom of Replacement with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2376. (Contributed by NM, 2-Jan-2002.) (New usage is discouraged.) |
| ⊢ ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧 ∈ 𝑥 ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) | ||
| Theorem | axunndlem1 10607* | Lemma for the Axiom of Union with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2376. (Contributed by NM, 2-Jan-2002.) (New usage is discouraged.) |
| ⊢ ∃𝑥∀𝑦(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) | ||
| Theorem | axunnd 10608 | A version of the Axiom of Union with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2376. (Contributed by NM, 2-Jan-2002.) (New usage is discouraged.) |
| ⊢ ∃𝑥∀𝑦(∃𝑥(𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) | ||
| Theorem | axpowndlem1 10609 | Lemma for the Axiom of Power Sets with no distinct variable conditions. (Contributed by NM, 4-Jan-2002.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → (¬ 𝑥 = 𝑦 → ∃𝑥∀𝑦(∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥))) | ||
| Theorem | axpowndlem2 10610* | Lemma for the Axiom of Power Sets with no distinct variable conditions. Revised to remove a redundant antecedent from the consequence. Usage of this theorem is discouraged because it depends on ax-13 2376. (Contributed by NM, 4-Jan-2002.) (Proof shortened by Mario Carneiro, 6-Dec-2016.) (Revised and shortened by Wolf Lammen, 9-Jun-2019.) (New usage is discouraged.) |
| ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑧 → ∃𝑥∀𝑦(∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥))) | ||
| Theorem | axpowndlem3 10611* | Lemma for the Axiom of Power Sets with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2376. (Contributed by NM, 4-Jan-2002.) (Revised by Mario Carneiro, 10-Dec-2016.) (Proof shortened by Wolf Lammen, 10-Jun-2019.) (New usage is discouraged.) |
| ⊢ (¬ 𝑥 = 𝑦 → ∃𝑥∀𝑦(∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) | ||
| Theorem | axpowndlem4 10612 | Lemma for the Axiom of Power Sets with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2376. (Contributed by NM, 4-Jan-2002.) (Proof shortened by Mario Carneiro, 10-Dec-2016.) (New usage is discouraged.) |
| ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → (¬ ∀𝑦 𝑦 = 𝑧 → (¬ 𝑥 = 𝑦 → ∃𝑥∀𝑦(∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)))) | ||
| Theorem | axpownd 10613 | A version of the Axiom of Power Sets with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2376. (Contributed by NM, 4-Jan-2002.) (New usage is discouraged.) |
| ⊢ (¬ 𝑥 = 𝑦 → ∃𝑥∀𝑦(∀𝑥(∃𝑧 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥)) | ||
| Theorem | axregndlem1 10614 | Lemma for the Axiom of Regularity with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2376. (Contributed by NM, 3-Jan-2002.) (New usage is discouraged.) |
| ⊢ (∀𝑥 𝑥 = 𝑧 → (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦)))) | ||
| Theorem | axregndlem2 10615* | Lemma for the Axiom of Regularity with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2376. (Contributed by NM, 3-Jan-2002.) (Proof shortened by Mario Carneiro, 10-Dec-2016.) (New usage is discouraged.) |
| ⊢ (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) | ||
| Theorem | axregnd 10616 | A version of the Axiom of Regularity with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2376. (Contributed by NM, 3-Jan-2002.) (Proof shortened by Wolf Lammen, 18-Aug-2019.) (New usage is discouraged.) |
| ⊢ (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) | ||
| Theorem | axinfndlem1 10617* | Lemma for the Axiom of Infinity with no distinct variable conditions. (New usage is discouraged.) (Contributed by NM, 5-Jan-2002.) |
| ⊢ (∀𝑥 𝑦 ∈ 𝑧 → ∃𝑥(𝑦 ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)))) | ||
| Theorem | axinfnd 10618 | A version of the Axiom of Infinity with no distinct variable conditions. (New usage is discouraged.) (Contributed by NM, 5-Jan-2002.) |
| ⊢ ∃𝑥(𝑦 ∈ 𝑧 → (𝑦 ∈ 𝑥 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑥)))) | ||
| Theorem | axacndlem1 10619 | Lemma for the Axiom of Choice with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2376. (Contributed by NM, 3-Jan-2002.) (New usage is discouraged.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) | ||
| Theorem | axacndlem2 10620 | Lemma for the Axiom of Choice with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2376. (Contributed by NM, 3-Jan-2002.) (New usage is discouraged.) |
| ⊢ (∀𝑥 𝑥 = 𝑧 → ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) | ||
| Theorem | axacndlem3 10621 | Lemma for the Axiom of Choice with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2376. (Contributed by NM, 3-Jan-2002.) (New usage is discouraged.) |
| ⊢ (∀𝑦 𝑦 = 𝑧 → ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤))) | ||
| Theorem | axacndlem4 10622* | Lemma for the Axiom of Choice with no distinct variable conditions. (New usage is discouraged.) (Contributed by NM, 8-Jan-2002.) (Proof shortened by Mario Carneiro, 10-Dec-2016.) |
| ⊢ ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)) | ||
| Theorem | axacndlem5 10623* | Lemma for the Axiom of Choice with no distinct variable conditions. (New usage is discouraged.) (Contributed by NM, 3-Jan-2002.) (Proof shortened by Mario Carneiro, 10-Dec-2016.) |
| ⊢ ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)) | ||
| Theorem | axacnd 10624 | A version of the Axiom of Choice with no distinct variable conditions. (New usage is discouraged.) (Contributed by NM, 3-Jan-2002.) (Proof shortened by Mario Carneiro, 10-Dec-2016.) |
| ⊢ ∃𝑥∀𝑦∀𝑧(∀𝑥(𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) → ∃𝑤∀𝑦(∃𝑤((𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝑤) ∧ (𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) ↔ 𝑦 = 𝑤)) | ||
| Theorem | zfcndext 10625* | Axiom of Extensionality ax-ext 2707, reproved from conditionless ZFC version and predicate calculus. Usage of this theorem is discouraged because it depends on ax-13 2376. (Contributed by NM, 15-Aug-2003.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦) | ||
| Theorem | zfcndrep 10626* | Axiom of Replacement ax-rep 5249, reproved from conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 2376. (Contributed by NM, 15-Aug-2003.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (∀𝑤∃𝑦∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑦) → ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤(𝑤 ∈ 𝑥 ∧ ∀𝑦𝜑))) | ||
| Theorem | zfcndun 10627* | Axiom of Union ax-un 7727, reproved from conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 2376. (Contributed by NM, 15-Aug-2003.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ∃𝑦∀𝑧(∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) | ||
| Theorem | zfcndpow 10628* | Axiom of Power Sets ax-pow 5335, reproved from conditionless ZFC axioms. The proof uses the "Axiom of Twoness" dtru 5411. Usage of this theorem is discouraged because it depends on ax-13 2376. (Contributed by NM, 15-Aug-2003.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) | ||
| Theorem | zfcndreg 10629* | Axiom of Regularity ax-reg 9604, reproved from conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 2376. (Contributed by NM, 15-Aug-2003.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (∃𝑦 𝑦 ∈ 𝑥 → ∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) | ||
| Theorem | zfcndinf 10630* | Axiom of Infinity ax-inf 9650, reproved from conditionless ZFC axioms. Since we have already reproved Extensionality, Replacement, and Power Sets above, we are justified in referencing Theorem el 5412 in the proof. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by NM, 15-Aug-2003.) |
| ⊢ ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦))) | ||
| Theorem | zfcndac 10631* | Axiom of Choice ax-ac 10471, reproved from conditionless ZFC axioms. (Contributed by NM, 15-Aug-2003.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ ∃𝑦∀𝑧∀𝑤((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → ∃𝑣∀𝑢(∃𝑡((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡) ∧ (𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦)) ↔ 𝑢 = 𝑣)) | ||
| Syntax | cgch 10632 | Extend class notation to include the collection of sets that satisfy the GCH. |
| class GCH | ||
| Definition | df-gch 10633* | Define the collection of "GCH-sets", or sets for which the generalized continuum hypothesis holds. In this language the generalized continuum hypothesis can be expressed as GCH = V. A set 𝑥 satisfies the generalized continuum hypothesis if it is finite or there is no set 𝑦 strictly between 𝑥 and its powerset in cardinality. The continuum hypothesis is equivalent to ω ∈ GCH. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ GCH = (Fin ∪ {𝑥 ∣ ∀𝑦 ¬ (𝑥 ≺ 𝑦 ∧ 𝑦 ≺ 𝒫 𝑥)}) | ||
| Theorem | elgch 10634* | Elementhood in the collection of GCH-sets. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ GCH ↔ (𝐴 ∈ Fin ∨ ∀𝑥 ¬ (𝐴 ≺ 𝑥 ∧ 𝑥 ≺ 𝒫 𝐴)))) | ||
| Theorem | fingch 10635 | A finite set is a GCH-set. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ Fin ⊆ GCH | ||
| Theorem | gchi 10636 | The only GCH-sets which have other sets between it and its power set are finite sets. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ ((𝐴 ∈ GCH ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴) → 𝐴 ∈ Fin) | ||
| Theorem | gchen1 10637 | If 𝐴 ≤ 𝐵 < 𝒫 𝐴, and 𝐴 is an infinite GCH-set, then 𝐴 = 𝐵 in cardinality. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝒫 𝐴)) → 𝐴 ≈ 𝐵) | ||
| Theorem | gchen2 10638 | If 𝐴 < 𝐵 ≤ 𝒫 𝐴, and 𝐴 is an infinite GCH-set, then 𝐵 = 𝒫 𝐴 in cardinality. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝒫 𝐴)) → 𝐵 ≈ 𝒫 𝐴) | ||
| Theorem | gchor 10639 | If 𝐴 ≤ 𝐵 ≤ 𝒫 𝐴, and 𝐴 is an infinite GCH-set, then either 𝐴 = 𝐵 or 𝐵 = 𝒫 𝐴 in cardinality. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ (((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝒫 𝐴)) → (𝐴 ≈ 𝐵 ∨ 𝐵 ≈ 𝒫 𝐴)) | ||
| Theorem | engch 10640 | The property of being a GCH-set is a cardinal invariant. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ GCH ↔ 𝐵 ∈ GCH)) | ||
| Theorem | gchdomtri 10641 | Under certain conditions, a GCH-set can demonstrate trichotomy of dominance. Lemma for gchac 10693. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ ((𝐴 ∈ GCH ∧ (𝐴 ⊔ 𝐴) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴) → (𝐴 ≼ 𝐵 ∨ 𝐵 ≼ 𝐴)) | ||
| Theorem | fpwwe2cbv 10642* | Lemma for fpwwe2 10655. (Contributed by Mario Carneiro, 3-Jun-2015.) |
| ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} ⇒ ⊢ 𝑊 = {〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 [(◡𝑠 “ {𝑧}) / 𝑣](𝑣𝐹(𝑠 ∩ (𝑣 × 𝑣))) = 𝑧))} | ||
| Theorem | fpwwe2lem1 10643* | Lemma for fpwwe2 10655. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} ⇒ ⊢ 𝑊 ⊆ (𝒫 𝐴 × 𝒫 (𝐴 × 𝐴)) | ||
| Theorem | fpwwe2lem2 10644* | Lemma for fpwwe2 10655. (Contributed by Mario Carneiro, 19-May-2015.) (Revised by AV, 20-Jul-2024.) |
| ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋𝑊𝑅 ↔ ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 [(◡𝑅 “ {𝑦}) / 𝑢](𝑢𝐹(𝑅 ∩ (𝑢 × 𝑢))) = 𝑦)))) | ||
| Theorem | fpwwe2lem3 10645* | Lemma for fpwwe2 10655. (Contributed by Mario Carneiro, 19-May-2015.) (Revised by AV, 20-Jul-2024.) |
| ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑋𝑊𝑅) ⇒ ⊢ ((𝜑 ∧ 𝐵 ∈ 𝑋) → ((◡𝑅 “ {𝐵})𝐹(𝑅 ∩ ((◡𝑅 “ {𝐵}) × (◡𝑅 “ {𝐵})))) = 𝐵) | ||
| Theorem | fpwwe2lem4 10646* | Lemma for fpwwe2 10655. (Contributed by Mario Carneiro, 15-May-2015.) (Revised by AV, 20-Jul-2024.) (Proof shortened by Matthew House, 10-Sep-2025.) |
| ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) ⇒ ⊢ ((𝜑 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋) ∧ 𝑅 We 𝑋)) → (𝑋𝐹𝑅) ∈ 𝐴) | ||
| Theorem | fpwwe2lem5 10647* | Lemma for fpwwe2 10655. (Contributed by Mario Carneiro, 18-May-2015.) (Revised by AV, 20-Jul-2024.) |
| ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) & ⊢ (𝜑 → 𝑋𝑊𝑅) & ⊢ (𝜑 → 𝑌𝑊𝑆) & ⊢ 𝑀 = OrdIso(𝑅, 𝑋) & ⊢ 𝑁 = OrdIso(𝑆, 𝑌) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑀) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑁) & ⊢ (𝜑 → (𝑀 ↾ 𝐵) = (𝑁 ↾ 𝐵)) ⇒ ⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → (𝐶 ∈ 𝑋 ∧ 𝐶 ∈ 𝑌 ∧ (◡𝑀‘𝐶) = (◡𝑁‘𝐶))) | ||
| Theorem | fpwwe2lem6 10648* | Lemma for fpwwe2 10655. (Contributed by Mario Carneiro, 18-May-2015.) (Revised by AV, 20-Jul-2024.) |
| ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) & ⊢ (𝜑 → 𝑋𝑊𝑅) & ⊢ (𝜑 → 𝑌𝑊𝑆) & ⊢ 𝑀 = OrdIso(𝑅, 𝑋) & ⊢ 𝑁 = OrdIso(𝑆, 𝑌) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑀) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑁) & ⊢ (𝜑 → (𝑀 ↾ 𝐵) = (𝑁 ↾ 𝐵)) ⇒ ⊢ ((𝜑 ∧ 𝐶𝑅(𝑀‘𝐵)) → (𝐶𝑆(𝑁‘𝐵) ∧ (𝐷𝑅(𝑀‘𝐵) → (𝐶𝑅𝐷 ↔ 𝐶𝑆𝐷)))) | ||
| Theorem | fpwwe2lem7 10649* | Lemma for fpwwe2 10655. Show by induction that the two isometries 𝑀 and 𝑁 agree on their common domain. (Contributed by Mario Carneiro, 15-May-2015.) (Proof shortened by Peter Mazsa, 23-Sep-2022.) (Revised by AV, 20-Jul-2024.) |
| ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) & ⊢ (𝜑 → 𝑋𝑊𝑅) & ⊢ (𝜑 → 𝑌𝑊𝑆) & ⊢ 𝑀 = OrdIso(𝑅, 𝑋) & ⊢ 𝑁 = OrdIso(𝑆, 𝑌) & ⊢ (𝜑 → dom 𝑀 ⊆ dom 𝑁) ⇒ ⊢ (𝜑 → 𝑀 = (𝑁 ↾ dom 𝑀)) | ||
| Theorem | fpwwe2lem8 10650* | Lemma for fpwwe2 10655. Given two well-orders 〈𝑋, 𝑅〉 and 〈𝑌, 𝑆〉 of parts of 𝐴, one is an initial segment of the other. (The 𝑂 ⊆ 𝑃 hypothesis is in order to break the symmetry of 𝑋 and 𝑌.) (Contributed by Mario Carneiro, 15-May-2015.) (Proof shortened by Peter Mazsa, 23-Sep-2022.) (Revised by AV, 20-Jul-2024.) |
| ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) & ⊢ (𝜑 → 𝑋𝑊𝑅) & ⊢ (𝜑 → 𝑌𝑊𝑆) & ⊢ 𝑀 = OrdIso(𝑅, 𝑋) & ⊢ 𝑁 = OrdIso(𝑆, 𝑌) & ⊢ (𝜑 → dom 𝑀 ⊆ dom 𝑁) ⇒ ⊢ (𝜑 → (𝑋 ⊆ 𝑌 ∧ 𝑅 = (𝑆 ∩ (𝑌 × 𝑋)))) | ||
| Theorem | fpwwe2lem9 10651* | Lemma for fpwwe2 10655. Given two well-orders 〈𝑋, 𝑅〉 and 〈𝑌, 𝑆〉 of parts of 𝐴, one is an initial segment of the other. (Contributed by Mario Carneiro, 15-May-2015.) (Revised by AV, 20-Jul-2024.) |
| ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) & ⊢ (𝜑 → 𝑋𝑊𝑅) & ⊢ (𝜑 → 𝑌𝑊𝑆) ⇒ ⊢ (𝜑 → ((𝑋 ⊆ 𝑌 ∧ 𝑅 = (𝑆 ∩ (𝑌 × 𝑋))) ∨ (𝑌 ⊆ 𝑋 ∧ 𝑆 = (𝑅 ∩ (𝑋 × 𝑌))))) | ||
| Theorem | fpwwe2lem10 10652* | Lemma for fpwwe2 10655. (Contributed by Mario Carneiro, 15-May-2015.) (Revised by AV, 20-Jul-2024.) |
| ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) & ⊢ 𝑋 = ∪ dom 𝑊 ⇒ ⊢ (𝜑 → 𝑊:dom 𝑊⟶𝒫 (𝑋 × 𝑋)) | ||
| Theorem | fpwwe2lem11 10653* | Lemma for fpwwe2 10655. (Contributed by Mario Carneiro, 18-May-2015.) (Proof shortened by Peter Mazsa, 23-Sep-2022.) (Revised by AV, 20-Jul-2024.) |
| ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) & ⊢ 𝑋 = ∪ dom 𝑊 ⇒ ⊢ (𝜑 → 𝑋 ∈ dom 𝑊) | ||
| Theorem | fpwwe2lem12 10654* | Lemma for fpwwe2 10655. (Contributed by Mario Carneiro, 18-May-2015.) (Revised by AV, 20-Jul-2024.) |
| ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) & ⊢ 𝑋 = ∪ dom 𝑊 ⇒ ⊢ (𝜑 → (𝑋𝐹(𝑊‘𝑋)) ∈ 𝑋) | ||
| Theorem | fpwwe2 10655* | Given any function 𝐹 from well-orderings of subsets of 𝐴 to 𝐴, there is a unique well-ordered subset 〈𝑋, (𝑊‘𝑋)〉 which "agrees" with 𝐹 in the sense that each initial segment maps to its upper bound, and such that the entire set maps to an element of the set (so that it cannot be extended without losing the well-ordering). This theorem can be used to prove dfac8a 10042. Theorem 1.1 of [KanamoriPincus] p. 415. (Contributed by Mario Carneiro, 18-May-2015.) (Revised by AV, 20-Jul-2024.) |
| ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)) → (𝑥𝐹𝑟) ∈ 𝐴) & ⊢ 𝑋 = ∪ dom 𝑊 ⇒ ⊢ (𝜑 → ((𝑌𝑊𝑅 ∧ (𝑌𝐹𝑅) ∈ 𝑌) ↔ (𝑌 = 𝑋 ∧ 𝑅 = (𝑊‘𝑋)))) | ||
| Theorem | fpwwecbv 10656* | Lemma for fpwwe 10658. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘(◡𝑟 “ {𝑦})) = 𝑦))} ⇒ ⊢ 𝑊 = {〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 (𝐹‘(◡𝑠 “ {𝑧})) = 𝑧))} | ||
| Theorem | fpwwelem 10657* | Lemma for fpwwe 10658. (Contributed by Mario Carneiro, 15-May-2015.) (Revised by AV, 20-Jul-2024.) |
| ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘(◡𝑟 “ {𝑦})) = 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋𝑊𝑅 ↔ ((𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ (𝑋 × 𝑋)) ∧ (𝑅 We 𝑋 ∧ ∀𝑦 ∈ 𝑋 (𝐹‘(◡𝑅 “ {𝑦})) = 𝑦)))) | ||
| Theorem | fpwwe 10658* | Given any function 𝐹 from the powerset of 𝐴 to 𝐴, canth2 9142 gives that the function is not injective, but we can say rather more than that. There is a unique well-ordered subset 〈𝑋, (𝑊‘𝑋)〉 which "agrees" with 𝐹 in the sense that each initial segment maps to its upper bound, and such that the entire set maps to an element of the set (so that it cannot be extended without losing the well-ordering). This theorem can be used to prove dfac8a 10042. Theorem 1.1 of [KanamoriPincus] p. 415. (Contributed by Mario Carneiro, 18-May-2015.) (Revised by AV, 20-Jul-2024.) |
| ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘(◡𝑟 “ {𝑦})) = 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ dom card)) → (𝐹‘𝑥) ∈ 𝐴) & ⊢ 𝑋 = ∪ dom 𝑊 ⇒ ⊢ (𝜑 → ((𝑌𝑊𝑅 ∧ (𝐹‘𝑌) ∈ 𝑌) ↔ (𝑌 = 𝑋 ∧ 𝑅 = (𝑊‘𝑋)))) | ||
| Theorem | canth4 10659* | An "effective" form of Cantor's theorem canth 7357. For any function 𝐹 from the powerset of 𝐴 to 𝐴, there are two definable sets 𝐵 and 𝐶 which witness non-injectivity of 𝐹. Corollary 1.3 of [KanamoriPincus] p. 416. (Contributed by Mario Carneiro, 18-May-2015.) |
| ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘(◡𝑟 “ {𝑦})) = 𝑦))} & ⊢ 𝐵 = ∪ dom 𝑊 & ⊢ 𝐶 = (◡(𝑊‘𝐵) “ {(𝐹‘𝐵)}) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐷⟶𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝐵 ⊆ 𝐴 ∧ 𝐶 ⊊ 𝐵 ∧ (𝐹‘𝐵) = (𝐹‘𝐶))) | ||
| Theorem | canthnumlem 10660* | Lemma for canthnum 10661. (Contributed by Mario Carneiro, 19-May-2015.) |
| ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝐹‘(◡𝑟 “ {𝑦})) = 𝑦))} & ⊢ 𝐵 = ∪ dom 𝑊 & ⊢ 𝐶 = (◡(𝑊‘𝐵) “ {(𝐹‘𝐵)}) ⇒ ⊢ (𝐴 ∈ 𝑉 → ¬ 𝐹:(𝒫 𝐴 ∩ dom card)–1-1→𝐴) | ||
| Theorem | canthnum 10661 | The set of well-orderable subsets of a set 𝐴 strictly dominates 𝐴. A stronger form of canth2 9142. Corollary 1.4(a) of [KanamoriPincus] p. 417. (Contributed by Mario Carneiro, 19-May-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≺ (𝒫 𝐴 ∩ dom card)) | ||
| Theorem | canthwelem 10662* | Lemma for canthwe 10663. (Contributed by Mario Carneiro, 31-May-2015.) |
| ⊢ 𝑂 = {〈𝑥, 𝑟〉 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)} & ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 [(◡𝑟 “ {𝑦}) / 𝑢](𝑢𝐹(𝑟 ∩ (𝑢 × 𝑢))) = 𝑦))} & ⊢ 𝐵 = ∪ dom 𝑊 & ⊢ 𝐶 = (◡(𝑊‘𝐵) “ {(𝐵𝐹(𝑊‘𝐵))}) ⇒ ⊢ (𝐴 ∈ 𝑉 → ¬ 𝐹:𝑂–1-1→𝐴) | ||
| Theorem | canthwe 10663* | The set of well-orders of a set 𝐴 strictly dominates 𝐴. A stronger form of canth2 9142. Corollary 1.4(b) of [KanamoriPincus] p. 417. (Contributed by Mario Carneiro, 31-May-2015.) |
| ⊢ 𝑂 = {〈𝑥, 𝑟〉 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥)} ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≺ 𝑂) | ||
| Theorem | canthp1lem1 10664 | Lemma for canthp1 10666. (Contributed by Mario Carneiro, 18-May-2015.) |
| ⊢ (1o ≺ 𝐴 → (𝐴 ⊔ 2o) ≼ 𝒫 𝐴) | ||
| Theorem | canthp1lem2 10665* | Lemma for canthp1 10666. (Contributed by Mario Carneiro, 18-May-2015.) |
| ⊢ (𝜑 → 1o ≺ 𝐴) & ⊢ (𝜑 → 𝐹:𝒫 𝐴–1-1-onto→(𝐴 ⊔ 1o)) & ⊢ (𝜑 → 𝐺:((𝐴 ⊔ 1o) ∖ {(𝐹‘𝐴)})–1-1-onto→𝐴) & ⊢ 𝐻 = ((𝐺 ∘ 𝐹) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))) & ⊢ 𝑊 = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝐻‘(◡𝑟 “ {𝑦})) = 𝑦))} & ⊢ 𝐵 = ∪ dom 𝑊 ⇒ ⊢ ¬ 𝜑 | ||
| Theorem | canthp1 10666 | A slightly stronger form of Cantor's theorem: For 1 < 𝑛, 𝑛 + 1 < 2↑𝑛. Corollary 1.6 of [KanamoriPincus] p. 417. (Contributed by Mario Carneiro, 18-May-2015.) |
| ⊢ (1o ≺ 𝐴 → (𝐴 ⊔ 1o) ≺ 𝒫 𝐴) | ||
| Theorem | finngch 10667 | The exclusion of finite sets from consideration in df-gch 10633 is necessary, because otherwise finite sets larger than a singleton would violate the GCH property. (Contributed by Mario Carneiro, 10-Jun-2015.) |
| ⊢ ((𝐴 ∈ Fin ∧ 1o ≺ 𝐴) → (𝐴 ≺ (𝐴 ⊔ 1o) ∧ (𝐴 ⊔ 1o) ≺ 𝒫 𝐴)) | ||
| Theorem | gchdju1 10668 | An infinite GCH-set is idempotent under cardinal successor. (Contributed by Mario Carneiro, 18-May-2015.) |
| ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ⊔ 1o) ≈ 𝐴) | ||
| Theorem | gchinf 10669 | An infinite GCH-set is Dedekind-infinite. (Contributed by Mario Carneiro, 31-May-2015.) |
| ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ω ≼ 𝐴) | ||
| Theorem | pwfseqlem1 10670* | Lemma for pwfseq 10676. Derive a contradiction by diagonalization. (Contributed by Mario Carneiro, 31-May-2015.) |
| ⊢ (𝜑 → 𝐺:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) & ⊢ (𝜑 → 𝑋 ⊆ 𝐴) & ⊢ (𝜑 → 𝐻:ω–1-1-onto→𝑋) & ⊢ (𝜓 ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥)) & ⊢ ((𝜑 ∧ 𝜓) → 𝐾:∪ 𝑛 ∈ ω (𝑥 ↑m 𝑛)–1-1→𝑥) & ⊢ 𝐷 = (𝐺‘{𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))}) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝐷 ∈ (∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛) ∖ ∪ 𝑛 ∈ ω (𝑥 ↑m 𝑛))) | ||
| Theorem | pwfseqlem2 10671* | Lemma for pwfseq 10676. (Contributed by Mario Carneiro, 18-Nov-2014.) (Revised by AV, 18-Sep-2021.) |
| ⊢ (𝜑 → 𝐺:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) & ⊢ (𝜑 → 𝑋 ⊆ 𝐴) & ⊢ (𝜑 → 𝐻:ω–1-1-onto→𝑋) & ⊢ (𝜓 ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥)) & ⊢ ((𝜑 ∧ 𝜓) → 𝐾:∪ 𝑛 ∈ ω (𝑥 ↑m 𝑛)–1-1→𝑥) & ⊢ 𝐷 = (𝐺‘{𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))}) & ⊢ 𝐹 = (𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬ (𝐷‘𝑧) ∈ 𝑥}))) ⇒ ⊢ ((𝑌 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑌𝐹𝑅) = (𝐻‘(card‘𝑌))) | ||
| Theorem | pwfseqlem3 10672* | Lemma for pwfseq 10676. Using the construction 𝐷 from pwfseqlem1 10670, produce a function 𝐹 that maps any well-ordered infinite set to an element outside the set. (Contributed by Mario Carneiro, 31-May-2015.) |
| ⊢ (𝜑 → 𝐺:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) & ⊢ (𝜑 → 𝑋 ⊆ 𝐴) & ⊢ (𝜑 → 𝐻:ω–1-1-onto→𝑋) & ⊢ (𝜓 ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥)) & ⊢ ((𝜑 ∧ 𝜓) → 𝐾:∪ 𝑛 ∈ ω (𝑥 ↑m 𝑛)–1-1→𝑥) & ⊢ 𝐷 = (𝐺‘{𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))}) & ⊢ 𝐹 = (𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬ (𝐷‘𝑧) ∈ 𝑥}))) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (𝑥𝐹𝑟) ∈ (𝐴 ∖ 𝑥)) | ||
| Theorem | pwfseqlem4a 10673* | Lemma for pwfseqlem4 10674. (Contributed by Mario Carneiro, 7-Jun-2016.) |
| ⊢ (𝜑 → 𝐺:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) & ⊢ (𝜑 → 𝑋 ⊆ 𝐴) & ⊢ (𝜑 → 𝐻:ω–1-1-onto→𝑋) & ⊢ (𝜓 ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥)) & ⊢ ((𝜑 ∧ 𝜓) → 𝐾:∪ 𝑛 ∈ ω (𝑥 ↑m 𝑛)–1-1→𝑥) & ⊢ 𝐷 = (𝐺‘{𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))}) & ⊢ 𝐹 = (𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬ (𝐷‘𝑧) ∈ 𝑥}))) ⇒ ⊢ ((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (𝑎𝐹𝑠) ∈ 𝐴) | ||
| Theorem | pwfseqlem4 10674* | Lemma for pwfseq 10676. Derive a final contradiction from the function 𝐹 in pwfseqlem3 10672. Applying fpwwe2 10655 to it, we get a certain maximal well-ordered subset 𝑍, but the defining property (𝑍𝐹(𝑊‘𝑍)) ∈ 𝑍 contradicts our assumption on 𝐹, so we are reduced to the case of 𝑍 finite. This too is a contradiction, though, because 𝑍 and its preimage under (𝑊‘𝑍) are distinct sets of the same cardinality and in a subset relation, which is impossible for finite sets. (Contributed by Mario Carneiro, 31-May-2015.) (Proof shortened by Matthew House, 10-Sep-2025.) |
| ⊢ (𝜑 → 𝐺:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) & ⊢ (𝜑 → 𝑋 ⊆ 𝐴) & ⊢ (𝜑 → 𝐻:ω–1-1-onto→𝑋) & ⊢ (𝜓 ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥)) & ⊢ ((𝜑 ∧ 𝜓) → 𝐾:∪ 𝑛 ∈ ω (𝑥 ↑m 𝑛)–1-1→𝑥) & ⊢ 𝐷 = (𝐺‘{𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))}) & ⊢ 𝐹 = (𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬ (𝐷‘𝑧) ∈ 𝑥}))) & ⊢ 𝑊 = {〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑏 ∈ 𝑎 [(◡𝑠 “ {𝑏}) / 𝑣](𝑣𝐹(𝑠 ∩ (𝑣 × 𝑣))) = 𝑏))} & ⊢ 𝑍 = ∪ dom 𝑊 ⇒ ⊢ ¬ 𝜑 | ||
| Theorem | pwfseqlem5 10675* |
Lemma for pwfseq 10676. Although in some ways pwfseqlem4 10674 is the "main"
part of the proof, one last aspect which makes up a remark in the
original text is by far the hardest part to formalize. The main proof
relies on the existence of an injection 𝐾 from the set of finite
sequences on an infinite set 𝑥 to 𝑥. Now this alone would
not
be difficult to prove; this is mostly the claim of fseqen 10039. However,
what is needed for the proof is a canonical injection on these
sets,
so we have to start from scratch pulling together explicit bijections
from the lemmas.
If one attempts such a program, it will mostly go through, but there is one key step which is inherently nonconstructive, namely the proof of infxpen 10026. The resolution is not obvious, but it turns out that reversing an infinite ordinal's Cantor normal form absorbs all the non-leading terms (cnfcom3c 9718), which can be used to construct a pairing function explicitly using properties of the ordinal exponential (infxpenc 10030). (Contributed by Mario Carneiro, 31-May-2015.) |
| ⊢ (𝜑 → 𝐺:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) & ⊢ (𝜑 → 𝑋 ⊆ 𝐴) & ⊢ (𝜑 → 𝐻:ω–1-1-onto→𝑋) & ⊢ (𝜓 ↔ ((𝑡 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑡 × 𝑡) ∧ 𝑟 We 𝑡) ∧ ω ≼ 𝑡)) & ⊢ (𝜑 → ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑁‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏)) & ⊢ 𝑂 = OrdIso(𝑟, 𝑡) & ⊢ 𝑇 = (𝑢 ∈ dom 𝑂, 𝑣 ∈ dom 𝑂 ↦ 〈(𝑂‘𝑢), (𝑂‘𝑣)〉) & ⊢ 𝑃 = ((𝑂 ∘ (𝑁‘dom 𝑂)) ∘ ◡𝑇) & ⊢ 𝑆 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝑡 ↑m suc 𝑘) ↦ ((𝑓‘(𝑥 ↾ 𝑘))𝑃(𝑥‘𝑘)))), {〈∅, (𝑂‘∅)〉}) & ⊢ 𝑄 = (𝑦 ∈ ∪ 𝑛 ∈ ω (𝑡 ↑m 𝑛) ↦ 〈dom 𝑦, ((𝑆‘dom 𝑦)‘𝑦)〉) & ⊢ 𝐼 = (𝑥 ∈ ω, 𝑦 ∈ 𝑡 ↦ 〈(𝑂‘𝑥), 𝑦〉) & ⊢ 𝐾 = ((𝑃 ∘ 𝐼) ∘ 𝑄) ⇒ ⊢ ¬ 𝜑 | ||
| Theorem | pwfseq 10676* | The powerset of a Dedekind-infinite set does not inject into the set of finite sequences. The proof is due to Halbeisen and Shelah. Proposition 1.7 of [KanamoriPincus] p. 418. (Contributed by Mario Carneiro, 31-May-2015.) |
| ⊢ (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ ∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) | ||
| Theorem | pwxpndom2 10677 | The powerset of a Dedekind-infinite set does not inject into its Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015.) (Proof shortened by AV, 18-Jul-2022.) |
| ⊢ (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴))) | ||
| Theorem | pwxpndom 10678 | The powerset of a Dedekind-infinite set does not inject into its Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015.) |
| ⊢ (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 × 𝐴)) | ||
| Theorem | pwdjundom 10679 | The powerset of a Dedekind-infinite set does not inject into its cardinal sum with itself. (Contributed by Mario Carneiro, 31-May-2015.) |
| ⊢ (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 ⊔ 𝐴)) | ||
| Theorem | gchdjuidm 10680 | An infinite GCH-set is idempotent under cardinal sum. Part of Lemma 2.2 of [KanamoriPincus] p. 419. (Contributed by Mario Carneiro, 31-May-2015.) |
| ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ⊔ 𝐴) ≈ 𝐴) | ||
| Theorem | gchxpidm 10681 | An infinite GCH-set is idempotent under cardinal product. Part of Lemma 2.2 of [KanamoriPincus] p. 419. (Contributed by Mario Carneiro, 31-May-2015.) |
| ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ≈ 𝐴) | ||
| Theorem | gchpwdom 10682 | A relationship between dominance over the powerset and strict dominance when the sets involved are infinite GCH-sets. Proposition 3.1 of [KanamoriPincus] p. 421. (Contributed by Mario Carneiro, 31-May-2015.) |
| ⊢ ((ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) → (𝐴 ≺ 𝐵 ↔ 𝒫 𝐴 ≼ 𝐵)) | ||
| Theorem | gchaleph 10683 | If (ℵ‘𝐴) is a GCH-set and its powerset is well-orderable, then the successor aleph (ℵ‘suc 𝐴) is equinumerous to the powerset of (ℵ‘𝐴). (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → (ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴)) | ||
| Theorem | gchaleph2 10684 | If (ℵ‘𝐴) and (ℵ‘suc 𝐴) are GCH-sets, then the successor aleph (ℵ‘suc 𝐴) is equinumerous to the powerset of (ℵ‘𝐴). (Contributed by Mario Carneiro, 31-May-2015.) |
| ⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → (ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴)) | ||
| Theorem | hargch 10685 | If 𝐴 + ≈ 𝒫 𝐴, then 𝐴 is a GCH-set. The much simpler converse to gchhar 10691. (Contributed by Mario Carneiro, 2-Jun-2015.) |
| ⊢ ((har‘𝐴) ≈ 𝒫 𝐴 → 𝐴 ∈ GCH) | ||
| Theorem | alephgch 10686 | If (ℵ‘suc 𝐴) is equinumerous to the powerset of (ℵ‘𝐴), then (ℵ‘𝐴) is a GCH-set. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ ((ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴) → (ℵ‘𝐴) ∈ GCH) | ||
| Theorem | gch2 10687 | It is sufficient to require that all alephs are GCH-sets to ensure the full generalized continuum hypothesis. (The proof uses the Axiom of Regularity.) (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ (GCH = V ↔ ran ℵ ⊆ GCH) | ||
| Theorem | gch3 10688 | An equivalent formulation of the generalized continuum hypothesis. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ (GCH = V ↔ ∀𝑥 ∈ On (ℵ‘suc 𝑥) ≈ 𝒫 (ℵ‘𝑥)) | ||
| Theorem | gch-kn 10689* | The equivalence of two versions of the Generalized Continuum Hypothesis. The right-hand side is the standard version in the literature. The left-hand side is a version devised by Kannan Nambiar, which he calls the Axiom of Combinatorial Sets. For the notation and motivation behind this axiom, see his paper, "Derivation of Continuum Hypothesis from Axiom of Combinatorial Sets", available at http://www.e-atheneum.net/science/derivation_ch.pdf. The equivalence of the two sides provides a negative answer to Open Problem 2 in http://www.e-atheneum.net/science/open_problem_print.pdf. The key idea in the proof below is to equate both sides of alephexp2 10593 to the successor aleph using enen2 9130. (Contributed by NM, 1-Oct-2004.) |
| ⊢ (𝐴 ∈ On → ((ℵ‘suc 𝐴) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))} ↔ (ℵ‘suc 𝐴) ≈ (2o ↑m (ℵ‘𝐴)))) | ||
| Theorem | gchaclem 10690 | Lemma for gchac 10693 (obsolete, used in Sierpiński's proof). (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ (𝜑 → ω ≼ 𝐴) & ⊢ (𝜑 → 𝒫 𝐶 ∈ GCH) & ⊢ (𝜑 → (𝐴 ≼ 𝐶 ∧ (𝐵 ≼ 𝒫 𝐶 → 𝒫 𝐴 ≼ 𝐵))) ⇒ ⊢ (𝜑 → (𝐴 ≼ 𝒫 𝐶 ∧ (𝐵 ≼ 𝒫 𝒫 𝐶 → 𝒫 𝐴 ≼ 𝐵))) | ||
| Theorem | gchhar 10691 | A "local" form of gchac 10693. If 𝐴 and 𝒫 𝐴 are GCH-sets, then the Hartogs number of 𝐴 is 𝒫 𝐴 (so 𝒫 𝐴 and a fortiori 𝐴 are well-orderable). The proof is due to Specker. Theorem 2.1 of [KanamoriPincus] p. 419. (Contributed by Mario Carneiro, 31-May-2015.) |
| ⊢ ((ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ≈ 𝒫 𝐴) | ||
| Theorem | gchacg 10692 | A "local" form of gchac 10693. If 𝐴 and 𝒫 𝐴 are GCH-sets, then 𝒫 𝐴 is well-orderable. The proof is due to Specker. Theorem 2.1 of [KanamoriPincus] p. 419. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ ((ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝐴 ∈ dom card) | ||
| Theorem | gchac 10693 | The Generalized Continuum Hypothesis implies the Axiom of Choice. The original proof is due to Sierpiński (1947); we use a refinement of Sierpiński's result due to Specker. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ (GCH = V → CHOICE) | ||
Here we introduce Tarski-Grothendieck (TG) set theory, named after mathematicians Alfred Tarski and Alexander Grothendieck. TG theory extends ZFC with the TG Axiom ax-groth 10835, which states that for every set 𝑥 there is an inaccessible cardinal 𝑦 such that 𝑦 is not in 𝑥. The addition of this axiom to ZFC set theory provides a framework for category theory, thus for all practical purposes giving us a complete foundation for "all of mathematics". We first introduce the concept of inaccessibles, including weakly and strongly inaccessible cardinals (df-wina 10696 and df-ina 10697 respectively ), Tarski classes (df-tsk 10761), and Grothendieck universes (df-gru 10803). We then introduce the Tarski's axiom ax-groth 10835 and prove various properties from that. | ||
| Syntax | cwina 10694 | The class of weak inaccessibles. |
| class Inaccw | ||
| Syntax | cina 10695 | The class of strong inaccessibles. |
| class Inacc | ||
| Definition | df-wina 10696* | An ordinal is weakly inaccessible iff it is a regular limit cardinal. Note that our definition allows ω as a weakly inaccessible cardinal. (Contributed by Mario Carneiro, 22-Jun-2013.) |
| ⊢ Inaccw = {𝑥 ∣ (𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝑥 𝑦 ≺ 𝑧)} | ||
| Definition | df-ina 10697* | An ordinal is strongly inaccessible iff it is a regular strong limit cardinal, which is to say that it dominates the powersets of every smaller ordinal. (Contributed by Mario Carneiro, 22-Jun-2013.) |
| ⊢ Inacc = {𝑥 ∣ (𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑥 𝒫 𝑦 ≺ 𝑥)} | ||
| Theorem | elwina 10698* | Conditions of weak inaccessibility. (Contributed by Mario Carneiro, 22-Jun-2013.) |
| ⊢ (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) | ||
| Theorem | elina 10699* | Conditions of strong inaccessibility. (Contributed by Mario Carneiro, 22-Jun-2013.) |
| ⊢ (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴)) | ||
| Theorem | winaon 10700 | A weakly inaccessible cardinal is an ordinal. (Contributed by Mario Carneiro, 29-May-2014.) |
| ⊢ (𝐴 ∈ Inaccw → 𝐴 ∈ On) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |