![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wuncval | Structured version Visualization version GIF version |
Description: Value of the weak universe closure operator. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
wuncval | ⊢ (𝐴 ∈ 𝑉 → (wUniCl‘𝐴) = ∩ {𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-wunc 9860 | . 2 ⊢ wUniCl = (𝑥 ∈ V ↦ ∩ {𝑢 ∈ WUni ∣ 𝑥 ⊆ 𝑢}) | |
2 | sseq1 3845 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝑢 ↔ 𝐴 ⊆ 𝑢)) | |
3 | 2 | rabbidv 3386 | . . 3 ⊢ (𝑥 = 𝐴 → {𝑢 ∈ WUni ∣ 𝑥 ⊆ 𝑢} = {𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢}) |
4 | 3 | inteqd 4715 | . 2 ⊢ (𝑥 = 𝐴 → ∩ {𝑢 ∈ WUni ∣ 𝑥 ⊆ 𝑢} = ∩ {𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢}) |
5 | elex 3414 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
6 | wunex 9896 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∃𝑢 ∈ WUni 𝐴 ⊆ 𝑢) | |
7 | rabn0 4188 | . . . 4 ⊢ ({𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢} ≠ ∅ ↔ ∃𝑢 ∈ WUni 𝐴 ⊆ 𝑢) | |
8 | 6, 7 | sylibr 226 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢} ≠ ∅) |
9 | intex 5054 | . . 3 ⊢ ({𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢} ≠ ∅ ↔ ∩ {𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢} ∈ V) | |
10 | 8, 9 | sylib 210 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢} ∈ V) |
11 | 1, 4, 5, 10 | fvmptd3 6564 | 1 ⊢ (𝐴 ∈ 𝑉 → (wUniCl‘𝐴) = ∩ {𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2107 ≠ wne 2969 ∃wrex 3091 {crab 3094 Vcvv 3398 ⊆ wss 3792 ∅c0 4141 ∩ cint 4710 ‘cfv 6135 WUnicwun 9857 wUniClcwunm 9858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-inf2 8835 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-om 7344 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-wun 9859 df-wunc 9860 |
This theorem is referenced by: wuncid 9900 wunccl 9901 wuncss 9902 |
Copyright terms: Public domain | W3C validator |