MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wuncval Structured version   Visualization version   GIF version

Theorem wuncval 10782
Description: Value of the weak universe closure operator. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
wuncval (𝐴𝑉 → (wUniCl‘𝐴) = {𝑢 ∈ WUni ∣ 𝐴𝑢})
Distinct variable groups:   𝑢,𝐴   𝑢,𝑉

Proof of Theorem wuncval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-wunc 10743 . 2 wUniCl = (𝑥 ∈ V ↦ {𝑢 ∈ WUni ∣ 𝑥𝑢})
2 sseq1 4009 . . . 4 (𝑥 = 𝐴 → (𝑥𝑢𝐴𝑢))
32rabbidv 3444 . . 3 (𝑥 = 𝐴 → {𝑢 ∈ WUni ∣ 𝑥𝑢} = {𝑢 ∈ WUni ∣ 𝐴𝑢})
43inteqd 4951 . 2 (𝑥 = 𝐴 {𝑢 ∈ WUni ∣ 𝑥𝑢} = {𝑢 ∈ WUni ∣ 𝐴𝑢})
5 elex 3501 . 2 (𝐴𝑉𝐴 ∈ V)
6 wunex 10779 . . . 4 (𝐴𝑉 → ∃𝑢 ∈ WUni 𝐴𝑢)
7 rabn0 4389 . . . 4 ({𝑢 ∈ WUni ∣ 𝐴𝑢} ≠ ∅ ↔ ∃𝑢 ∈ WUni 𝐴𝑢)
86, 7sylibr 234 . . 3 (𝐴𝑉 → {𝑢 ∈ WUni ∣ 𝐴𝑢} ≠ ∅)
9 intex 5344 . . 3 ({𝑢 ∈ WUni ∣ 𝐴𝑢} ≠ ∅ ↔ {𝑢 ∈ WUni ∣ 𝐴𝑢} ∈ V)
108, 9sylib 218 . 2 (𝐴𝑉 {𝑢 ∈ WUni ∣ 𝐴𝑢} ∈ V)
111, 4, 5, 10fvmptd3 7039 1 (𝐴𝑉 → (wUniCl‘𝐴) = {𝑢 ∈ WUni ∣ 𝐴𝑢})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wne 2940  wrex 3070  {crab 3436  Vcvv 3480  wss 3951  c0 4333   cint 4946  cfv 6561  WUnicwun 10740  wUniClcwunm 10741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-wun 10742  df-wunc 10743
This theorem is referenced by:  wuncid  10783  wunccl  10784  wuncss  10785
  Copyright terms: Public domain W3C validator