MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wuncval Structured version   Visualization version   GIF version

Theorem wuncval 10702
Description: Value of the weak universe closure operator. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
wuncval (𝐴𝑉 → (wUniCl‘𝐴) = {𝑢 ∈ WUni ∣ 𝐴𝑢})
Distinct variable groups:   𝑢,𝐴   𝑢,𝑉

Proof of Theorem wuncval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-wunc 10663 . 2 wUniCl = (𝑥 ∈ V ↦ {𝑢 ∈ WUni ∣ 𝑥𝑢})
2 sseq1 3975 . . . 4 (𝑥 = 𝐴 → (𝑥𝑢𝐴𝑢))
32rabbidv 3416 . . 3 (𝑥 = 𝐴 → {𝑢 ∈ WUni ∣ 𝑥𝑢} = {𝑢 ∈ WUni ∣ 𝐴𝑢})
43inteqd 4918 . 2 (𝑥 = 𝐴 {𝑢 ∈ WUni ∣ 𝑥𝑢} = {𝑢 ∈ WUni ∣ 𝐴𝑢})
5 elex 3471 . 2 (𝐴𝑉𝐴 ∈ V)
6 wunex 10699 . . . 4 (𝐴𝑉 → ∃𝑢 ∈ WUni 𝐴𝑢)
7 rabn0 4355 . . . 4 ({𝑢 ∈ WUni ∣ 𝐴𝑢} ≠ ∅ ↔ ∃𝑢 ∈ WUni 𝐴𝑢)
86, 7sylibr 234 . . 3 (𝐴𝑉 → {𝑢 ∈ WUni ∣ 𝐴𝑢} ≠ ∅)
9 intex 5302 . . 3 ({𝑢 ∈ WUni ∣ 𝐴𝑢} ≠ ∅ ↔ {𝑢 ∈ WUni ∣ 𝐴𝑢} ∈ V)
108, 9sylib 218 . 2 (𝐴𝑉 {𝑢 ∈ WUni ∣ 𝐴𝑢} ∈ V)
111, 4, 5, 10fvmptd3 6994 1 (𝐴𝑉 → (wUniCl‘𝐴) = {𝑢 ∈ WUni ∣ 𝐴𝑢})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2926  wrex 3054  {crab 3408  Vcvv 3450  wss 3917  c0 4299   cint 4913  cfv 6514  WUnicwun 10660  wUniClcwunm 10661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-wun 10662  df-wunc 10663
This theorem is referenced by:  wuncid  10703  wunccl  10704  wuncss  10705
  Copyright terms: Public domain W3C validator