Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iswun | Structured version Visualization version GIF version |
Description: Properties of a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
iswun | ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∈ WUni ↔ (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | treq 5193 | . . 3 ⊢ (𝑢 = 𝑈 → (Tr 𝑢 ↔ Tr 𝑈)) | |
2 | neeq1 3005 | . . 3 ⊢ (𝑢 = 𝑈 → (𝑢 ≠ ∅ ↔ 𝑈 ≠ ∅)) | |
3 | eleq2 2827 | . . . . 5 ⊢ (𝑢 = 𝑈 → (∪ 𝑥 ∈ 𝑢 ↔ ∪ 𝑥 ∈ 𝑈)) | |
4 | eleq2 2827 | . . . . 5 ⊢ (𝑢 = 𝑈 → (𝒫 𝑥 ∈ 𝑢 ↔ 𝒫 𝑥 ∈ 𝑈)) | |
5 | eleq2 2827 | . . . . . 6 ⊢ (𝑢 = 𝑈 → ({𝑥, 𝑦} ∈ 𝑢 ↔ {𝑥, 𝑦} ∈ 𝑈)) | |
6 | 5 | raleqbi1dv 3331 | . . . . 5 ⊢ (𝑢 = 𝑈 → (∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢 ↔ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)) |
7 | 3, 4, 6 | 3anbi123d 1434 | . . . 4 ⊢ (𝑢 = 𝑈 → ((∪ 𝑥 ∈ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢) ↔ (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈))) |
8 | 7 | raleqbi1dv 3331 | . . 3 ⊢ (𝑢 = 𝑈 → (∀𝑥 ∈ 𝑢 (∪ 𝑥 ∈ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢) ↔ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈))) |
9 | 1, 2, 8 | 3anbi123d 1434 | . 2 ⊢ (𝑢 = 𝑈 → ((Tr 𝑢 ∧ 𝑢 ≠ ∅ ∧ ∀𝑥 ∈ 𝑢 (∪ 𝑥 ∈ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢)) ↔ (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)))) |
10 | df-wun 10389 | . 2 ⊢ WUni = {𝑢 ∣ (Tr 𝑢 ∧ 𝑢 ≠ ∅ ∧ ∀𝑥 ∈ 𝑢 (∪ 𝑥 ∈ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢))} | |
11 | 9, 10 | elab2g 3604 | 1 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∈ WUni ↔ (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∅c0 4253 𝒫 cpw 4530 {cpr 4560 ∪ cuni 4836 Tr wtr 5187 WUnicwun 10387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-v 3424 df-in 3890 df-ss 3900 df-uni 4837 df-tr 5188 df-wun 10389 |
This theorem is referenced by: wuntr 10392 wununi 10393 wunpw 10394 wunpr 10396 wun0 10405 intwun 10422 r1limwun 10423 wunex2 10425 tskwun 10471 gruwun 10500 pwinfi2 41058 |
Copyright terms: Public domain | W3C validator |