MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iswun Structured version   Visualization version   GIF version

Theorem iswun 10115
Description: Properties of a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
iswun (𝑈𝑉 → (𝑈 ∈ WUni ↔ (Tr 𝑈𝑈 ≠ ∅ ∧ ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))))
Distinct variable group:   𝑥,𝑦,𝑈
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem iswun
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 treq 5142 . . 3 (𝑧 = 𝑤 → (Tr 𝑧 ↔ Tr 𝑤))
2 neeq1 3049 . . 3 (𝑧 = 𝑤 → (𝑧 ≠ ∅ ↔ 𝑤 ≠ ∅))
3 eleq2 2878 . . . . 5 (𝑧 = 𝑤 → ( 𝑥𝑧 𝑥𝑤))
4 eleq2 2878 . . . . 5 (𝑧 = 𝑤 → (𝒫 𝑥𝑧 ↔ 𝒫 𝑥𝑤))
5 eleq2 2878 . . . . . 6 (𝑧 = 𝑤 → ({𝑥, 𝑦} ∈ 𝑧 ↔ {𝑥, 𝑦} ∈ 𝑤))
65raleqbi1dv 3356 . . . . 5 (𝑧 = 𝑤 → (∀𝑦𝑧 {𝑥, 𝑦} ∈ 𝑧 ↔ ∀𝑦𝑤 {𝑥, 𝑦} ∈ 𝑤))
73, 4, 63anbi123d 1433 . . . 4 (𝑧 = 𝑤 → (( 𝑥𝑧 ∧ 𝒫 𝑥𝑧 ∧ ∀𝑦𝑧 {𝑥, 𝑦} ∈ 𝑧) ↔ ( 𝑥𝑤 ∧ 𝒫 𝑥𝑤 ∧ ∀𝑦𝑤 {𝑥, 𝑦} ∈ 𝑤)))
87raleqbi1dv 3356 . . 3 (𝑧 = 𝑤 → (∀𝑥𝑧 ( 𝑥𝑧 ∧ 𝒫 𝑥𝑧 ∧ ∀𝑦𝑧 {𝑥, 𝑦} ∈ 𝑧) ↔ ∀𝑥𝑤 ( 𝑥𝑤 ∧ 𝒫 𝑥𝑤 ∧ ∀𝑦𝑤 {𝑥, 𝑦} ∈ 𝑤)))
91, 2, 83anbi123d 1433 . 2 (𝑧 = 𝑤 → ((Tr 𝑧𝑧 ≠ ∅ ∧ ∀𝑥𝑧 ( 𝑥𝑧 ∧ 𝒫 𝑥𝑧 ∧ ∀𝑦𝑧 {𝑥, 𝑦} ∈ 𝑧)) ↔ (Tr 𝑤𝑤 ≠ ∅ ∧ ∀𝑥𝑤 ( 𝑥𝑤 ∧ 𝒫 𝑥𝑤 ∧ ∀𝑦𝑤 {𝑥, 𝑦} ∈ 𝑤))))
10 treq 5142 . . 3 (𝑤 = 𝑈 → (Tr 𝑤 ↔ Tr 𝑈))
11 neeq1 3049 . . 3 (𝑤 = 𝑈 → (𝑤 ≠ ∅ ↔ 𝑈 ≠ ∅))
12 eleq2 2878 . . . . 5 (𝑤 = 𝑈 → ( 𝑥𝑤 𝑥𝑈))
13 eleq2 2878 . . . . 5 (𝑤 = 𝑈 → (𝒫 𝑥𝑤 ↔ 𝒫 𝑥𝑈))
14 eleq2 2878 . . . . . 6 (𝑤 = 𝑈 → ({𝑥, 𝑦} ∈ 𝑤 ↔ {𝑥, 𝑦} ∈ 𝑈))
1514raleqbi1dv 3356 . . . . 5 (𝑤 = 𝑈 → (∀𝑦𝑤 {𝑥, 𝑦} ∈ 𝑤 ↔ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))
1612, 13, 153anbi123d 1433 . . . 4 (𝑤 = 𝑈 → (( 𝑥𝑤 ∧ 𝒫 𝑥𝑤 ∧ ∀𝑦𝑤 {𝑥, 𝑦} ∈ 𝑤) ↔ ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈)))
1716raleqbi1dv 3356 . . 3 (𝑤 = 𝑈 → (∀𝑥𝑤 ( 𝑥𝑤 ∧ 𝒫 𝑥𝑤 ∧ ∀𝑦𝑤 {𝑥, 𝑦} ∈ 𝑤) ↔ ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈)))
1810, 11, 173anbi123d 1433 . 2 (𝑤 = 𝑈 → ((Tr 𝑤𝑤 ≠ ∅ ∧ ∀𝑥𝑤 ( 𝑥𝑤 ∧ 𝒫 𝑥𝑤 ∧ ∀𝑦𝑤 {𝑥, 𝑦} ∈ 𝑤)) ↔ (Tr 𝑈𝑈 ≠ ∅ ∧ ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))))
19 df-wun 10113 . 2 WUni = {𝑧 ∣ (Tr 𝑧𝑧 ≠ ∅ ∧ ∀𝑥𝑧 ( 𝑥𝑧 ∧ 𝒫 𝑥𝑧 ∧ ∀𝑦𝑧 {𝑥, 𝑦} ∈ 𝑧))}
209, 18, 19elab2gw 3613 1 (𝑈𝑉 → (𝑈 ∈ WUni ↔ (Tr 𝑈𝑈 ≠ ∅ ∧ ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  c0 4243  𝒫 cpw 4497  {cpr 4527   cuni 4800  Tr wtr 5136  WUnicwun 10111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1086  df-ex 1782  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-ne 2988  df-ral 3111  df-v 3443  df-in 3888  df-ss 3898  df-uni 4801  df-tr 5137  df-wun 10113
This theorem is referenced by:  wuntr  10116  wununi  10117  wunpw  10118  wunpr  10120  wun0  10129  intwun  10146  r1limwun  10147  wunex2  10149  tskwun  10195  gruwun  10224  pwinfi2  40261
  Copyright terms: Public domain W3C validator