MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iswun Structured version   Visualization version   GIF version

Theorem iswun 10602
Description: Properties of a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
iswun (𝑈𝑉 → (𝑈 ∈ WUni ↔ (Tr 𝑈𝑈 ≠ ∅ ∧ ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))))
Distinct variable group:   𝑥,𝑦,𝑈
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem iswun
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 treq 5207 . . 3 (𝑢 = 𝑈 → (Tr 𝑢 ↔ Tr 𝑈))
2 neeq1 2991 . . 3 (𝑢 = 𝑈 → (𝑢 ≠ ∅ ↔ 𝑈 ≠ ∅))
3 eleq2 2822 . . . . 5 (𝑢 = 𝑈 → ( 𝑥𝑢 𝑥𝑈))
4 eleq2 2822 . . . . 5 (𝑢 = 𝑈 → (𝒫 𝑥𝑢 ↔ 𝒫 𝑥𝑈))
5 eleq2 2822 . . . . . 6 (𝑢 = 𝑈 → ({𝑥, 𝑦} ∈ 𝑢 ↔ {𝑥, 𝑦} ∈ 𝑈))
65raleqbi1dv 3305 . . . . 5 (𝑢 = 𝑈 → (∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 ↔ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))
73, 4, 63anbi123d 1438 . . . 4 (𝑢 = 𝑈 → (( 𝑥𝑢 ∧ 𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢) ↔ ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈)))
87raleqbi1dv 3305 . . 3 (𝑢 = 𝑈 → (∀𝑥𝑢 ( 𝑥𝑢 ∧ 𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢) ↔ ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈)))
91, 2, 83anbi123d 1438 . 2 (𝑢 = 𝑈 → ((Tr 𝑢𝑢 ≠ ∅ ∧ ∀𝑥𝑢 ( 𝑥𝑢 ∧ 𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢)) ↔ (Tr 𝑈𝑈 ≠ ∅ ∧ ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))))
10 df-wun 10600 . 2 WUni = {𝑢 ∣ (Tr 𝑢𝑢 ≠ ∅ ∧ ∀𝑥𝑢 ( 𝑥𝑢 ∧ 𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢))}
119, 10elab2g 3632 1 (𝑈𝑉 → (𝑈 ∈ WUni ↔ (Tr 𝑈𝑈 ≠ ∅ ∧ ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wral 3048  c0 4282  𝒫 cpw 4549  {cpr 4577   cuni 4858  Tr wtr 5200  WUnicwun 10598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-v 3439  df-ss 3915  df-uni 4859  df-tr 5201  df-wun 10600
This theorem is referenced by:  wuntr  10603  wununi  10604  wunpw  10605  wunpr  10607  wun0  10616  intwun  10633  r1limwun  10634  wunex2  10636  tskwun  10682  gruwun  10711  pwinfi2  43679
  Copyright terms: Public domain W3C validator