MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iswun Structured version   Visualization version   GIF version

Theorem iswun 10120
Description: Properties of a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
iswun (𝑈𝑉 → (𝑈 ∈ WUni ↔ (Tr 𝑈𝑈 ≠ ∅ ∧ ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))))
Distinct variable group:   𝑥,𝑦,𝑈
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem iswun
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 treq 5175 . . 3 (𝑢 = 𝑈 → (Tr 𝑢 ↔ Tr 𝑈))
2 neeq1 3083 . . 3 (𝑢 = 𝑈 → (𝑢 ≠ ∅ ↔ 𝑈 ≠ ∅))
3 eleq2 2906 . . . . 5 (𝑢 = 𝑈 → ( 𝑥𝑢 𝑥𝑈))
4 eleq2 2906 . . . . 5 (𝑢 = 𝑈 → (𝒫 𝑥𝑢 ↔ 𝒫 𝑥𝑈))
5 eleq2 2906 . . . . . 6 (𝑢 = 𝑈 → ({𝑥, 𝑦} ∈ 𝑢 ↔ {𝑥, 𝑦} ∈ 𝑈))
65raleqbi1dv 3409 . . . . 5 (𝑢 = 𝑈 → (∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 ↔ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))
73, 4, 63anbi123d 1429 . . . 4 (𝑢 = 𝑈 → (( 𝑥𝑢 ∧ 𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢) ↔ ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈)))
87raleqbi1dv 3409 . . 3 (𝑢 = 𝑈 → (∀𝑥𝑢 ( 𝑥𝑢 ∧ 𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢) ↔ ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈)))
91, 2, 83anbi123d 1429 . 2 (𝑢 = 𝑈 → ((Tr 𝑢𝑢 ≠ ∅ ∧ ∀𝑥𝑢 ( 𝑥𝑢 ∧ 𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢)) ↔ (Tr 𝑈𝑈 ≠ ∅ ∧ ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))))
10 df-wun 10118 . 2 WUni = {𝑢 ∣ (Tr 𝑢𝑢 ≠ ∅ ∧ ∀𝑥𝑢 ( 𝑥𝑢 ∧ 𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢))}
119, 10elab2g 3673 1 (𝑈𝑉 → (𝑈 ∈ WUni ↔ (Tr 𝑈𝑈 ≠ ∅ ∧ ∀𝑥𝑈 ( 𝑥𝑈 ∧ 𝒫 𝑥𝑈 ∧ ∀𝑦𝑈 {𝑥, 𝑦} ∈ 𝑈))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  w3a 1081   = wceq 1530  wcel 2107  wne 3021  wral 3143  c0 4295  𝒫 cpw 4542  {cpr 4566   cuni 4837  Tr wtr 5169  WUnicwun 10116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-in 3947  df-ss 3956  df-uni 4838  df-tr 5170  df-wun 10118
This theorem is referenced by:  wuntr  10121  wununi  10122  wunpw  10123  wunpr  10125  wun0  10134  intwun  10151  r1limwun  10152  wunex2  10154  tskwun  10200  gruwun  10229  pwinfi2  39805
  Copyright terms: Public domain W3C validator