![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iswun | Structured version Visualization version GIF version |
Description: Properties of a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
iswun | ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∈ WUni ↔ (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | treq 5274 | . . 3 ⊢ (𝑢 = 𝑈 → (Tr 𝑢 ↔ Tr 𝑈)) | |
2 | neeq1 2992 | . . 3 ⊢ (𝑢 = 𝑈 → (𝑢 ≠ ∅ ↔ 𝑈 ≠ ∅)) | |
3 | eleq2 2814 | . . . . 5 ⊢ (𝑢 = 𝑈 → (∪ 𝑥 ∈ 𝑢 ↔ ∪ 𝑥 ∈ 𝑈)) | |
4 | eleq2 2814 | . . . . 5 ⊢ (𝑢 = 𝑈 → (𝒫 𝑥 ∈ 𝑢 ↔ 𝒫 𝑥 ∈ 𝑈)) | |
5 | eleq2 2814 | . . . . . 6 ⊢ (𝑢 = 𝑈 → ({𝑥, 𝑦} ∈ 𝑢 ↔ {𝑥, 𝑦} ∈ 𝑈)) | |
6 | 5 | raleqbi1dv 3322 | . . . . 5 ⊢ (𝑢 = 𝑈 → (∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢 ↔ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)) |
7 | 3, 4, 6 | 3anbi123d 1432 | . . . 4 ⊢ (𝑢 = 𝑈 → ((∪ 𝑥 ∈ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢) ↔ (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈))) |
8 | 7 | raleqbi1dv 3322 | . . 3 ⊢ (𝑢 = 𝑈 → (∀𝑥 ∈ 𝑢 (∪ 𝑥 ∈ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢) ↔ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈))) |
9 | 1, 2, 8 | 3anbi123d 1432 | . 2 ⊢ (𝑢 = 𝑈 → ((Tr 𝑢 ∧ 𝑢 ≠ ∅ ∧ ∀𝑥 ∈ 𝑢 (∪ 𝑥 ∈ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢)) ↔ (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)))) |
10 | df-wun 10727 | . 2 ⊢ WUni = {𝑢 ∣ (Tr 𝑢 ∧ 𝑢 ≠ ∅ ∧ ∀𝑥 ∈ 𝑢 (∪ 𝑥 ∈ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢))} | |
11 | 9, 10 | elab2g 3666 | 1 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∈ WUni ↔ (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 ∀wral 3050 ∅c0 4322 𝒫 cpw 4604 {cpr 4632 ∪ cuni 4909 Tr wtr 5266 WUnicwun 10725 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1086 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2930 df-ral 3051 df-rex 3060 df-v 3463 df-ss 3961 df-uni 4910 df-tr 5267 df-wun 10727 |
This theorem is referenced by: wuntr 10730 wununi 10731 wunpw 10732 wunpr 10734 wun0 10743 intwun 10760 r1limwun 10761 wunex2 10763 tskwun 10809 gruwun 10838 pwinfi2 43134 |
Copyright terms: Public domain | W3C validator |