Detailed syntax breakdown of Definition df-xms
| Step | Hyp | Ref
| Expression |
| 1 | | cxms 24327 |
. 2
class
∞MetSp |
| 2 | | vf |
. . . . . 6
setvar 𝑓 |
| 3 | 2 | cv 1539 |
. . . . 5
class 𝑓 |
| 4 | | ctopn 17466 |
. . . . 5
class
TopOpen |
| 5 | 3, 4 | cfv 6561 |
. . . 4
class
(TopOpen‘𝑓) |
| 6 | | cds 17306 |
. . . . . . 7
class
dist |
| 7 | 3, 6 | cfv 6561 |
. . . . . 6
class
(dist‘𝑓) |
| 8 | | cbs 17247 |
. . . . . . . 8
class
Base |
| 9 | 3, 8 | cfv 6561 |
. . . . . . 7
class
(Base‘𝑓) |
| 10 | 9, 9 | cxp 5683 |
. . . . . 6
class
((Base‘𝑓)
× (Base‘𝑓)) |
| 11 | 7, 10 | cres 5687 |
. . . . 5
class
((dist‘𝑓)
↾ ((Base‘𝑓)
× (Base‘𝑓))) |
| 12 | | cmopn 21354 |
. . . . 5
class
MetOpen |
| 13 | 11, 12 | cfv 6561 |
. . . 4
class
(MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓)))) |
| 14 | 5, 13 | wceq 1540 |
. . 3
wff
(TopOpen‘𝑓) =
(MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓)))) |
| 15 | | ctps 22938 |
. . 3
class
TopSp |
| 16 | 14, 2, 15 | crab 3436 |
. 2
class {𝑓 ∈ TopSp ∣
(TopOpen‘𝑓) =
(MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))))} |
| 17 | 1, 16 | wceq 1540 |
1
wff
∞MetSp = {𝑓
∈ TopSp ∣ (TopOpen‘𝑓) = (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))))} |