| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isxms | Structured version Visualization version GIF version | ||
| Description: Express the predicate "〈𝑋, 𝐷〉 is an extended metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| isms.j | ⊢ 𝐽 = (TopOpen‘𝐾) |
| isms.x | ⊢ 𝑋 = (Base‘𝐾) |
| isms.d | ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) |
| Ref | Expression |
|---|---|
| isxms | ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6817 | . . . 4 ⊢ (𝑓 = 𝐾 → (TopOpen‘𝑓) = (TopOpen‘𝐾)) | |
| 2 | isms.j | . . . 4 ⊢ 𝐽 = (TopOpen‘𝐾) | |
| 3 | 1, 2 | eqtr4di 2784 | . . 3 ⊢ (𝑓 = 𝐾 → (TopOpen‘𝑓) = 𝐽) |
| 4 | fveq2 6817 | . . . . . 6 ⊢ (𝑓 = 𝐾 → (dist‘𝑓) = (dist‘𝐾)) | |
| 5 | fveq2 6817 | . . . . . . . 8 ⊢ (𝑓 = 𝐾 → (Base‘𝑓) = (Base‘𝐾)) | |
| 6 | isms.x | . . . . . . . 8 ⊢ 𝑋 = (Base‘𝐾) | |
| 7 | 5, 6 | eqtr4di 2784 | . . . . . . 7 ⊢ (𝑓 = 𝐾 → (Base‘𝑓) = 𝑋) |
| 8 | 7 | sqxpeqd 5643 | . . . . . 6 ⊢ (𝑓 = 𝐾 → ((Base‘𝑓) × (Base‘𝑓)) = (𝑋 × 𝑋)) |
| 9 | 4, 8 | reseq12d 5924 | . . . . 5 ⊢ (𝑓 = 𝐾 → ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) = ((dist‘𝐾) ↾ (𝑋 × 𝑋))) |
| 10 | isms.d | . . . . 5 ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) | |
| 11 | 9, 10 | eqtr4di 2784 | . . . 4 ⊢ (𝑓 = 𝐾 → ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) = 𝐷) |
| 12 | 11 | fveq2d 6821 | . . 3 ⊢ (𝑓 = 𝐾 → (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓)))) = (MetOpen‘𝐷)) |
| 13 | 3, 12 | eqeq12d 2747 | . 2 ⊢ (𝑓 = 𝐾 → ((TopOpen‘𝑓) = (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓)))) ↔ 𝐽 = (MetOpen‘𝐷))) |
| 14 | df-xms 24230 | . 2 ⊢ ∞MetSp = {𝑓 ∈ TopSp ∣ (TopOpen‘𝑓) = (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))))} | |
| 15 | 13, 14 | elrab2 3645 | 1 ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 × cxp 5609 ↾ cres 5613 ‘cfv 6476 Basecbs 17115 distcds 17165 TopOpenctopn 17320 MetOpencmopn 21276 TopSpctps 22842 ∞MetSpcxms 24227 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-xp 5617 df-res 5623 df-iota 6432 df-fv 6484 df-xms 24230 |
| This theorem is referenced by: isxms2 24358 xmstopn 24361 xmstps 24363 xmspropd 24383 |
| Copyright terms: Public domain | W3C validator |