Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isxms | Structured version Visualization version GIF version |
Description: Express the predicate "〈𝑋, 𝐷〉 is an extended metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
isms.j | ⊢ 𝐽 = (TopOpen‘𝐾) |
isms.x | ⊢ 𝑋 = (Base‘𝐾) |
isms.d | ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) |
Ref | Expression |
---|---|
isxms | ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6774 | . . . 4 ⊢ (𝑓 = 𝐾 → (TopOpen‘𝑓) = (TopOpen‘𝐾)) | |
2 | isms.j | . . . 4 ⊢ 𝐽 = (TopOpen‘𝐾) | |
3 | 1, 2 | eqtr4di 2796 | . . 3 ⊢ (𝑓 = 𝐾 → (TopOpen‘𝑓) = 𝐽) |
4 | fveq2 6774 | . . . . . 6 ⊢ (𝑓 = 𝐾 → (dist‘𝑓) = (dist‘𝐾)) | |
5 | fveq2 6774 | . . . . . . . 8 ⊢ (𝑓 = 𝐾 → (Base‘𝑓) = (Base‘𝐾)) | |
6 | isms.x | . . . . . . . 8 ⊢ 𝑋 = (Base‘𝐾) | |
7 | 5, 6 | eqtr4di 2796 | . . . . . . 7 ⊢ (𝑓 = 𝐾 → (Base‘𝑓) = 𝑋) |
8 | 7 | sqxpeqd 5621 | . . . . . 6 ⊢ (𝑓 = 𝐾 → ((Base‘𝑓) × (Base‘𝑓)) = (𝑋 × 𝑋)) |
9 | 4, 8 | reseq12d 5892 | . . . . 5 ⊢ (𝑓 = 𝐾 → ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) = ((dist‘𝐾) ↾ (𝑋 × 𝑋))) |
10 | isms.d | . . . . 5 ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) | |
11 | 9, 10 | eqtr4di 2796 | . . . 4 ⊢ (𝑓 = 𝐾 → ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) = 𝐷) |
12 | 11 | fveq2d 6778 | . . 3 ⊢ (𝑓 = 𝐾 → (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓)))) = (MetOpen‘𝐷)) |
13 | 3, 12 | eqeq12d 2754 | . 2 ⊢ (𝑓 = 𝐾 → ((TopOpen‘𝑓) = (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓)))) ↔ 𝐽 = (MetOpen‘𝐷))) |
14 | df-xms 23473 | . 2 ⊢ ∞MetSp = {𝑓 ∈ TopSp ∣ (TopOpen‘𝑓) = (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))))} | |
15 | 13, 14 | elrab2 3627 | 1 ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 × cxp 5587 ↾ cres 5591 ‘cfv 6433 Basecbs 16912 distcds 16971 TopOpenctopn 17132 MetOpencmopn 20587 TopSpctps 22081 ∞MetSpcxms 23470 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-res 5601 df-iota 6391 df-fv 6441 df-xms 23473 |
This theorem is referenced by: isxms2 23601 xmstopn 23604 xmstps 23606 xmspropd 23626 |
Copyright terms: Public domain | W3C validator |