MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isxms Structured version   Visualization version   GIF version

Theorem isxms 23508
Description: Express the predicate "𝑋, 𝐷 is an extended metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
isms.j 𝐽 = (TopOpen‘𝐾)
isms.x 𝑋 = (Base‘𝐾)
isms.d 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
isxms (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷)))

Proof of Theorem isxms
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6756 . . . 4 (𝑓 = 𝐾 → (TopOpen‘𝑓) = (TopOpen‘𝐾))
2 isms.j . . . 4 𝐽 = (TopOpen‘𝐾)
31, 2eqtr4di 2797 . . 3 (𝑓 = 𝐾 → (TopOpen‘𝑓) = 𝐽)
4 fveq2 6756 . . . . . 6 (𝑓 = 𝐾 → (dist‘𝑓) = (dist‘𝐾))
5 fveq2 6756 . . . . . . . 8 (𝑓 = 𝐾 → (Base‘𝑓) = (Base‘𝐾))
6 isms.x . . . . . . . 8 𝑋 = (Base‘𝐾)
75, 6eqtr4di 2797 . . . . . . 7 (𝑓 = 𝐾 → (Base‘𝑓) = 𝑋)
87sqxpeqd 5612 . . . . . 6 (𝑓 = 𝐾 → ((Base‘𝑓) × (Base‘𝑓)) = (𝑋 × 𝑋))
94, 8reseq12d 5881 . . . . 5 (𝑓 = 𝐾 → ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) = ((dist‘𝐾) ↾ (𝑋 × 𝑋)))
10 isms.d . . . . 5 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋))
119, 10eqtr4di 2797 . . . 4 (𝑓 = 𝐾 → ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) = 𝐷)
1211fveq2d 6760 . . 3 (𝑓 = 𝐾 → (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓)))) = (MetOpen‘𝐷))
133, 12eqeq12d 2754 . 2 (𝑓 = 𝐾 → ((TopOpen‘𝑓) = (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓)))) ↔ 𝐽 = (MetOpen‘𝐷)))
14 df-xms 23381 . 2 ∞MetSp = {𝑓 ∈ TopSp ∣ (TopOpen‘𝑓) = (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))))}
1513, 14elrab2 3620 1 (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108   × cxp 5578  cres 5582  cfv 6418  Basecbs 16840  distcds 16897  TopOpenctopn 17049  MetOpencmopn 20500  TopSpctps 21989  ∞MetSpcxms 23378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-res 5592  df-iota 6376  df-fv 6426  df-xms 23381
This theorem is referenced by:  isxms2  23509  xmstopn  23512  xmstps  23514  xmspropd  23534
  Copyright terms: Public domain W3C validator