![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isxms | Structured version Visualization version GIF version |
Description: Express the predicate "⟨𝑋, 𝐷⟩ is an extended metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
isms.j | ⊢ 𝐽 = (TopOpen‘𝐾) |
isms.x | ⊢ 𝑋 = (Base‘𝐾) |
isms.d | ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) |
Ref | Expression |
---|---|
isxms | ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6892 | . . . 4 ⊢ (𝑓 = 𝐾 → (TopOpen‘𝑓) = (TopOpen‘𝐾)) | |
2 | isms.j | . . . 4 ⊢ 𝐽 = (TopOpen‘𝐾) | |
3 | 1, 2 | eqtr4di 2791 | . . 3 ⊢ (𝑓 = 𝐾 → (TopOpen‘𝑓) = 𝐽) |
4 | fveq2 6892 | . . . . . 6 ⊢ (𝑓 = 𝐾 → (dist‘𝑓) = (dist‘𝐾)) | |
5 | fveq2 6892 | . . . . . . . 8 ⊢ (𝑓 = 𝐾 → (Base‘𝑓) = (Base‘𝐾)) | |
6 | isms.x | . . . . . . . 8 ⊢ 𝑋 = (Base‘𝐾) | |
7 | 5, 6 | eqtr4di 2791 | . . . . . . 7 ⊢ (𝑓 = 𝐾 → (Base‘𝑓) = 𝑋) |
8 | 7 | sqxpeqd 5709 | . . . . . 6 ⊢ (𝑓 = 𝐾 → ((Base‘𝑓) × (Base‘𝑓)) = (𝑋 × 𝑋)) |
9 | 4, 8 | reseq12d 5983 | . . . . 5 ⊢ (𝑓 = 𝐾 → ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) = ((dist‘𝐾) ↾ (𝑋 × 𝑋))) |
10 | isms.d | . . . . 5 ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) | |
11 | 9, 10 | eqtr4di 2791 | . . . 4 ⊢ (𝑓 = 𝐾 → ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) = 𝐷) |
12 | 11 | fveq2d 6896 | . . 3 ⊢ (𝑓 = 𝐾 → (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓)))) = (MetOpen‘𝐷)) |
13 | 3, 12 | eqeq12d 2749 | . 2 ⊢ (𝑓 = 𝐾 → ((TopOpen‘𝑓) = (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓)))) ↔ 𝐽 = (MetOpen‘𝐷))) |
14 | df-xms 23826 | . 2 ⊢ ∞MetSp = {𝑓 ∈ TopSp ∣ (TopOpen‘𝑓) = (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))))} | |
15 | 13, 14 | elrab2 3687 | 1 ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 × cxp 5675 ↾ cres 5679 ‘cfv 6544 Basecbs 17144 distcds 17206 TopOpenctopn 17367 MetOpencmopn 20934 TopSpctps 22434 ∞MetSpcxms 23823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-xp 5683 df-res 5689 df-iota 6496 df-fv 6552 df-xms 23826 |
This theorem is referenced by: isxms2 23954 xmstopn 23957 xmstps 23959 xmspropd 23979 |
Copyright terms: Public domain | W3C validator |