![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isxms | Structured version Visualization version GIF version |
Description: Express the predicate "〈𝑋, 𝐷〉 is an extended metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by Mario Carneiro, 2-Sep-2015.) |
Ref | Expression |
---|---|
isms.j | ⊢ 𝐽 = (TopOpen‘𝐾) |
isms.x | ⊢ 𝑋 = (Base‘𝐾) |
isms.d | ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) |
Ref | Expression |
---|---|
isxms | ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6920 | . . . 4 ⊢ (𝑓 = 𝐾 → (TopOpen‘𝑓) = (TopOpen‘𝐾)) | |
2 | isms.j | . . . 4 ⊢ 𝐽 = (TopOpen‘𝐾) | |
3 | 1, 2 | eqtr4di 2798 | . . 3 ⊢ (𝑓 = 𝐾 → (TopOpen‘𝑓) = 𝐽) |
4 | fveq2 6920 | . . . . . 6 ⊢ (𝑓 = 𝐾 → (dist‘𝑓) = (dist‘𝐾)) | |
5 | fveq2 6920 | . . . . . . . 8 ⊢ (𝑓 = 𝐾 → (Base‘𝑓) = (Base‘𝐾)) | |
6 | isms.x | . . . . . . . 8 ⊢ 𝑋 = (Base‘𝐾) | |
7 | 5, 6 | eqtr4di 2798 | . . . . . . 7 ⊢ (𝑓 = 𝐾 → (Base‘𝑓) = 𝑋) |
8 | 7 | sqxpeqd 5732 | . . . . . 6 ⊢ (𝑓 = 𝐾 → ((Base‘𝑓) × (Base‘𝑓)) = (𝑋 × 𝑋)) |
9 | 4, 8 | reseq12d 6010 | . . . . 5 ⊢ (𝑓 = 𝐾 → ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) = ((dist‘𝐾) ↾ (𝑋 × 𝑋))) |
10 | isms.d | . . . . 5 ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) | |
11 | 9, 10 | eqtr4di 2798 | . . . 4 ⊢ (𝑓 = 𝐾 → ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) = 𝐷) |
12 | 11 | fveq2d 6924 | . . 3 ⊢ (𝑓 = 𝐾 → (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓)))) = (MetOpen‘𝐷)) |
13 | 3, 12 | eqeq12d 2756 | . 2 ⊢ (𝑓 = 𝐾 → ((TopOpen‘𝑓) = (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓)))) ↔ 𝐽 = (MetOpen‘𝐷))) |
14 | df-xms 24351 | . 2 ⊢ ∞MetSp = {𝑓 ∈ TopSp ∣ (TopOpen‘𝑓) = (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))))} | |
15 | 13, 14 | elrab2 3711 | 1 ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 × cxp 5698 ↾ cres 5702 ‘cfv 6573 Basecbs 17258 distcds 17320 TopOpenctopn 17481 MetOpencmopn 21377 TopSpctps 22959 ∞MetSpcxms 24348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-res 5712 df-iota 6525 df-fv 6581 df-xms 24351 |
This theorem is referenced by: isxms2 24479 xmstopn 24482 xmstps 24484 xmspropd 24504 |
Copyright terms: Public domain | W3C validator |