| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isxms | Structured version Visualization version GIF version | ||
| Description: Express the predicate "〈𝑋, 𝐷〉 is an extended metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| isms.j | ⊢ 𝐽 = (TopOpen‘𝐾) |
| isms.x | ⊢ 𝑋 = (Base‘𝐾) |
| isms.d | ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) |
| Ref | Expression |
|---|---|
| isxms | ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6861 | . . . 4 ⊢ (𝑓 = 𝐾 → (TopOpen‘𝑓) = (TopOpen‘𝐾)) | |
| 2 | isms.j | . . . 4 ⊢ 𝐽 = (TopOpen‘𝐾) | |
| 3 | 1, 2 | eqtr4di 2783 | . . 3 ⊢ (𝑓 = 𝐾 → (TopOpen‘𝑓) = 𝐽) |
| 4 | fveq2 6861 | . . . . . 6 ⊢ (𝑓 = 𝐾 → (dist‘𝑓) = (dist‘𝐾)) | |
| 5 | fveq2 6861 | . . . . . . . 8 ⊢ (𝑓 = 𝐾 → (Base‘𝑓) = (Base‘𝐾)) | |
| 6 | isms.x | . . . . . . . 8 ⊢ 𝑋 = (Base‘𝐾) | |
| 7 | 5, 6 | eqtr4di 2783 | . . . . . . 7 ⊢ (𝑓 = 𝐾 → (Base‘𝑓) = 𝑋) |
| 8 | 7 | sqxpeqd 5673 | . . . . . 6 ⊢ (𝑓 = 𝐾 → ((Base‘𝑓) × (Base‘𝑓)) = (𝑋 × 𝑋)) |
| 9 | 4, 8 | reseq12d 5954 | . . . . 5 ⊢ (𝑓 = 𝐾 → ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) = ((dist‘𝐾) ↾ (𝑋 × 𝑋))) |
| 10 | isms.d | . . . . 5 ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) | |
| 11 | 9, 10 | eqtr4di 2783 | . . . 4 ⊢ (𝑓 = 𝐾 → ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) = 𝐷) |
| 12 | 11 | fveq2d 6865 | . . 3 ⊢ (𝑓 = 𝐾 → (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓)))) = (MetOpen‘𝐷)) |
| 13 | 3, 12 | eqeq12d 2746 | . 2 ⊢ (𝑓 = 𝐾 → ((TopOpen‘𝑓) = (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓)))) ↔ 𝐽 = (MetOpen‘𝐷))) |
| 14 | df-xms 24215 | . 2 ⊢ ∞MetSp = {𝑓 ∈ TopSp ∣ (TopOpen‘𝑓) = (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))))} | |
| 15 | 13, 14 | elrab2 3665 | 1 ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 × cxp 5639 ↾ cres 5643 ‘cfv 6514 Basecbs 17186 distcds 17236 TopOpenctopn 17391 MetOpencmopn 21261 TopSpctps 22826 ∞MetSpcxms 24212 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-res 5653 df-iota 6467 df-fv 6522 df-xms 24215 |
| This theorem is referenced by: isxms2 24343 xmstopn 24346 xmstps 24348 xmspropd 24368 |
| Copyright terms: Public domain | W3C validator |