MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-ms Structured version   Visualization version   GIF version

Definition df-ms 22335
Description: Define the (proper) class of all metric spaces. (Contributed by NM, 27-Aug-2006.)
Assertion
Ref Expression
df-ms MetSp = {𝑓 ∈ ∞MetSp ∣ ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) ∈ (Met‘(Base‘𝑓))}

Detailed syntax breakdown of Definition df-ms
StepHypRef Expression
1 cmt 22332 . 2 class MetSp
2 vf . . . . . . 7 setvar 𝑓
32cv 1636 . . . . . 6 class 𝑓
4 cds 16158 . . . . . 6 class dist
53, 4cfv 6097 . . . . 5 class (dist‘𝑓)
6 cbs 16064 . . . . . . 7 class Base
73, 6cfv 6097 . . . . . 6 class (Base‘𝑓)
87, 7cxp 5309 . . . . 5 class ((Base‘𝑓) × (Base‘𝑓))
95, 8cres 5313 . . . 4 class ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓)))
10 cme 19936 . . . . 5 class Met
117, 10cfv 6097 . . . 4 class (Met‘(Base‘𝑓))
129, 11wcel 2156 . . 3 wff ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) ∈ (Met‘(Base‘𝑓))
13 cxme 22331 . . 3 class ∞MetSp
1412, 2, 13crab 3100 . 2 class {𝑓 ∈ ∞MetSp ∣ ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) ∈ (Met‘(Base‘𝑓))}
151, 14wceq 1637 1 wff MetSp = {𝑓 ∈ ∞MetSp ∣ ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) ∈ (Met‘(Base‘𝑓))}
Colors of variables: wff setvar class
This definition is referenced by:  isms  22463
  Copyright terms: Public domain W3C validator