Detailed syntax breakdown of Definition df-ms
| Step | Hyp | Ref
| Expression |
| 1 | | cms 24328 |
. 2
class
MetSp |
| 2 | | vf |
. . . . . . 7
setvar 𝑓 |
| 3 | 2 | cv 1539 |
. . . . . 6
class 𝑓 |
| 4 | | cds 17306 |
. . . . . 6
class
dist |
| 5 | 3, 4 | cfv 6561 |
. . . . 5
class
(dist‘𝑓) |
| 6 | | cbs 17247 |
. . . . . . 7
class
Base |
| 7 | 3, 6 | cfv 6561 |
. . . . . 6
class
(Base‘𝑓) |
| 8 | 7, 7 | cxp 5683 |
. . . . 5
class
((Base‘𝑓)
× (Base‘𝑓)) |
| 9 | 5, 8 | cres 5687 |
. . . 4
class
((dist‘𝑓)
↾ ((Base‘𝑓)
× (Base‘𝑓))) |
| 10 | | cmet 21350 |
. . . . 5
class
Met |
| 11 | 7, 10 | cfv 6561 |
. . . 4
class
(Met‘(Base‘𝑓)) |
| 12 | 9, 11 | wcel 2108 |
. . 3
wff
((dist‘𝑓)
↾ ((Base‘𝑓)
× (Base‘𝑓)))
∈ (Met‘(Base‘𝑓)) |
| 13 | | cxms 24327 |
. . 3
class
∞MetSp |
| 14 | 12, 2, 13 | crab 3436 |
. 2
class {𝑓 ∈ ∞MetSp ∣
((dist‘𝑓) ↾
((Base‘𝑓) ×
(Base‘𝑓))) ∈
(Met‘(Base‘𝑓))} |
| 15 | 1, 14 | wceq 1540 |
1
wff MetSp =
{𝑓 ∈ ∞MetSp
∣ ((dist‘𝑓)
↾ ((Base‘𝑓)
× (Base‘𝑓)))
∈ (Met‘(Base‘𝑓))} |