| Metamath
Proof Explorer Theorem List (p. 243 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | psmetf 24201 | The distance function of a pseudometric as a function. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
| ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) | ||
| Theorem | psmetcl 24202 | Closure of the distance function of a pseudometric space. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
| ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ*) | ||
| Theorem | psmet0 24203 | The distance function of a pseudometric space is zero if its arguments are equal. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
| ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝐴) = 0) | ||
| Theorem | psmettri2 24204 | Triangle inequality for the distance function of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018.) |
| ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵))) | ||
| Theorem | psmetsym 24205 | The distance function of a pseudometric is symmetrical. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
| ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴)) | ||
| Theorem | psmettri 24206 | Triangle inequality for the distance function of a pseudometric space. (Contributed by Thierry Arnoux, 11-Feb-2018.) |
| ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐶𝐷𝐵))) | ||
| Theorem | psmetge0 24207 | The distance function of a pseudometric space is nonnegative. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
| ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 0 ≤ (𝐴𝐷𝐵)) | ||
| Theorem | psmetxrge0 24208 | The distance function of a pseudometric space is a function into the nonnegative extended real numbers. (Contributed by Thierry Arnoux, 24-Feb-2018.) |
| ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞)) | ||
| Theorem | psmetres2 24209 | Restriction of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018.) |
| ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (PsMet‘𝑅)) | ||
| Theorem | psmetlecl 24210 | Real closure of an extended metric value that is upper bounded by a real. (Contributed by Thierry Arnoux, 11-Mar-2018.) |
| ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ ℝ ∧ (𝐴𝐷𝐵) ≤ 𝐶)) → (𝐴𝐷𝐵) ∈ ℝ) | ||
| Theorem | distspace 24211 | A set 𝑋 together with a (distance) function 𝐷 which is a pseudometric is a distance space (according to E. Deza, M.M. Deza: "Dictionary of Distances", Elsevier, 2006), i.e. a (base) set 𝑋 equipped with a distance 𝐷, which is a mapping of two elements of the base set to the (extended) reals and which is nonnegative, symmetric and equal to 0 if the two elements are equal. (Contributed by AV, 15-Oct-2021.) (Revised by AV, 5-Jul-2022.) |
| ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ (𝐴𝐷𝐴) = 0) ∧ (0 ≤ (𝐴𝐷𝐵) ∧ (𝐴𝐷𝐵) = (𝐵𝐷𝐴)))) | ||
| Syntax | cxms 24212 | Extend class notation with the class of extended metric spaces. |
| class ∞MetSp | ||
| Syntax | cms 24213 | Extend class notation with the class of metric spaces. |
| class MetSp | ||
| Syntax | ctms 24214 | Extend class notation with the function mapping a metric to the metric space it defines. |
| class toMetSp | ||
| Definition | df-xms 24215 | Define the (proper) class of extended metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ ∞MetSp = {𝑓 ∈ TopSp ∣ (TopOpen‘𝑓) = (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))))} | ||
| Definition | df-ms 24216 | Define the (proper) class of metric spaces. (Contributed by NM, 27-Aug-2006.) |
| ⊢ MetSp = {𝑓 ∈ ∞MetSp ∣ ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) ∈ (Met‘(Base‘𝑓))} | ||
| Definition | df-tms 24217 | Define the function mapping a metric to the metric space which it defines. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ toMetSp = (𝑑 ∈ ∪ ran ∞Met ↦ ({〈(Base‘ndx), dom dom 𝑑〉, 〈(dist‘ndx), 𝑑〉} sSet 〈(TopSet‘ndx), (MetOpen‘𝑑)〉)) | ||
| Theorem | ismet 24218* | Express the predicate "𝐷 is a metric." (Contributed by NM, 25-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.) |
| ⊢ (𝑋 ∈ 𝐴 → (𝐷 ∈ (Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))))) | ||
| Theorem | isxmet 24219* | Express the predicate "𝐷 is an extended metric." (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝑋 ∈ 𝐴 → (𝐷 ∈ (∞Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))) | ||
| Theorem | ismeti 24220* | Properties that determine a metric. (Contributed by NM, 17-Nov-2006.) (Revised by Mario Carneiro, 14-Aug-2015.) |
| ⊢ 𝑋 ∈ V & ⊢ 𝐷:(𝑋 × 𝑋)⟶ℝ & ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦)) & ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))) ⇒ ⊢ 𝐷 ∈ (Met‘𝑋) | ||
| Theorem | isxmetd 24221* | Properties that determine an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) (Revised by AV, 9-Apr-2024.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐷:(𝑋 × 𝑋)⟶ℝ*) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ⇒ ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) | ||
| Theorem | isxmet2d 24222* | It is safe to only require the triangle inequality when the values are real (so that we can use the standard addition over the reals), but in this case the nonnegativity constraint cannot be deduced and must be provided separately. (Counterexample: 𝐷(𝑥, 𝑦) = if(𝑥 = 𝑦, 0, -∞) satisfies all hypotheses except nonnegativity.) (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐷:(𝑋 × 𝑋)⟶ℝ*) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 0 ≤ (𝑥𝐷𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑥𝐷𝑦) ≤ 0 ↔ 𝑥 = 𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))) ⇒ ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) | ||
| Theorem | metflem 24223* | Lemma for metf 24225 and others. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.) |
| ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))) | ||
| Theorem | xmetf 24224 | Mapping of the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) | ||
| Theorem | metf 24225 | Mapping of the distance function of a metric space. (Contributed by NM, 30-Aug-2006.) |
| ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ) | ||
| Theorem | xmetcl 24226 | Closure of the distance function of a metric space. Part of Property M1 of [Kreyszig] p. 3. (Contributed by NM, 30-Aug-2006.) |
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ*) | ||
| Theorem | metcl 24227 | Closure of the distance function of a metric space. Part of Property M1 of [Kreyszig] p. 3. (Contributed by NM, 30-Aug-2006.) |
| ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ) | ||
| Theorem | ismet2 24228 | An extended metric is a metric exactly when it takes real values for all values of the arguments. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ)) | ||
| Theorem | metxmet 24229 | A metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | ||
| Theorem | xmetdmdm 24230 | Recover the base set from an extended metric. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = dom dom 𝐷) | ||
| Theorem | metdmdm 24231 | Recover the base set from a metric. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| ⊢ (𝐷 ∈ (Met‘𝑋) → 𝑋 = dom dom 𝐷) | ||
| Theorem | xmetunirn 24232 | Two ways to express an extended metric on an unspecified base. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| ⊢ (𝐷 ∈ ∪ ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷)) | ||
| Theorem | xmeteq0 24233 | The value of an extended metric is zero iff its arguments are equal. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵)) | ||
| Theorem | meteq0 24234 | The value of a metric is zero iff its arguments are equal. Property M2 of [Kreyszig] p. 4. (Contributed by NM, 30-Aug-2006.) |
| ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵)) | ||
| Theorem | xmettri2 24235 | Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵))) | ||
| Theorem | mettri2 24236 | Triangle inequality for the distance function of a metric space. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) + (𝐶𝐷𝐵))) | ||
| Theorem | xmet0 24237 | The distance function of a metric space is zero if its arguments are equal. Definition 14-1.1(a) of [Gleason] p. 223. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝐴) = 0) | ||
| Theorem | met0 24238 | The distance function of a metric space is zero if its arguments are equal. Definition 14-1.1(a) of [Gleason] p. 223. (Contributed by NM, 30-Aug-2006.) |
| ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝐴) = 0) | ||
| Theorem | xmetge0 24239 | The distance function of a metric space is nonnegative. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 0 ≤ (𝐴𝐷𝐵)) | ||
| Theorem | metge0 24240 | The distance function of a metric space is nonnegative. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.) |
| ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 0 ≤ (𝐴𝐷𝐵)) | ||
| Theorem | xmetlecl 24241 | Real closure of an extended metric value that is upper bounded by a real. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ ℝ ∧ (𝐴𝐷𝐵) ≤ 𝐶)) → (𝐴𝐷𝐵) ∈ ℝ) | ||
| Theorem | xmetsym 24242 | The distance function of an extended metric space is symmetric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴)) | ||
| Theorem | xmetpsmet 24243 | An extended metric is a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
| ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ (PsMet‘𝑋)) | ||
| Theorem | xmettpos 24244 | The distance function of an extended metric space is symmetric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐷 ∈ (∞Met‘𝑋) → tpos 𝐷 = 𝐷) | ||
| Theorem | metsym 24245 | The distance function of a metric space is symmetric. Definition 14-1.1(c) of [Gleason] p. 223. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴)) | ||
| Theorem | xmettri 24246 | Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of [Gleason] p. 223. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐶𝐷𝐵))) | ||
| Theorem | mettri 24247 | Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of [Gleason] p. 223. (Contributed by NM, 27-Aug-2006.) |
| ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) + (𝐶𝐷𝐵))) | ||
| Theorem | xmettri3 24248 | Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐵𝐷𝐶))) | ||
| Theorem | mettri3 24249 | Triangle inequality for the distance function of a metric space. (Contributed by NM, 13-Mar-2007.) |
| ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) + (𝐵𝐷𝐶))) | ||
| Theorem | xmetrtri 24250 | One half of the reverse triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 4-Sep-2015.) |
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶)) ≤ (𝐴𝐷𝐵)) | ||
| Theorem | xmetrtri2 24251 | The reverse triangle inequality for the distance function of an extended metric. In order to express the "extended absolute value function", we use the distance function xrsdsval 21334 defined on the extended real structure. (Contributed by Mario Carneiro, 4-Sep-2015.) |
| ⊢ 𝐾 = (dist‘ℝ*𝑠) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷𝐶)𝐾(𝐵𝐷𝐶)) ≤ (𝐴𝐷𝐵)) | ||
| Theorem | metrtri 24252 | Reverse triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 5-May-2014.) |
| ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (abs‘((𝐴𝐷𝐶) − (𝐵𝐷𝐶))) ≤ (𝐴𝐷𝐵)) | ||
| Theorem | xmetgt0 24253 | The distance function of an extended metric space is positive for unequal points. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ≠ 𝐵 ↔ 0 < (𝐴𝐷𝐵))) | ||
| Theorem | metgt0 24254 | The distance function of a metric space is positive for unequal points. Definition 14-1.1(b) of [Gleason] p. 223 and its converse. (Contributed by NM, 27-Aug-2006.) |
| ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ≠ 𝐵 ↔ 0 < (𝐴𝐷𝐵))) | ||
| Theorem | metn0 24255 | A metric space is nonempty iff its base set is nonempty. (Contributed by NM, 4-Oct-2007.) (Revised by Mario Carneiro, 14-Aug-2015.) |
| ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 ≠ ∅ ↔ 𝑋 ≠ ∅)) | ||
| Theorem | xmetres2 24256 | Restriction of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘𝑅)) | ||
| Theorem | metreslem 24257 | Lemma for metres 24260. (Contributed by Mario Carneiro, 24-Aug-2015.) |
| ⊢ (dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅)))) | ||
| Theorem | metres2 24258 | Lemma for metres 24260. (Contributed by FL, 12-Oct-2006.) (Proof shortened by Mario Carneiro, 14-Aug-2015.) |
| ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘𝑅)) | ||
| Theorem | xmetres 24259 | A restriction of an extended metric is an extended metric. (Contributed by Mario Carneiro, 24-Aug-2015.) |
| ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘(𝑋 ∩ 𝑅))) | ||
| Theorem | metres 24260 | A restriction of a metric is a metric. (Contributed by NM, 26-Aug-2007.) (Revised by Mario Carneiro, 14-Aug-2015.) |
| ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘(𝑋 ∩ 𝑅))) | ||
| Theorem | 0met 24261 | The empty metric. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.) |
| ⊢ ∅ ∈ (Met‘∅) | ||
| Theorem | prdsdsf 24262* | The product metric is a function into the nonnegative extended reals. In general this means that it is not a metric but rather an *extended* metric (even when all the factors are metrics), but it will be a metric when restricted to regions where it does not take infinite values. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑉 = (Base‘𝑅) & ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) & ⊢ 𝐷 = (dist‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → 𝐼 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐸 ∈ (∞Met‘𝑉)) ⇒ ⊢ (𝜑 → 𝐷:(𝐵 × 𝐵)⟶(0[,]+∞)) | ||
| Theorem | prdsxmetlem 24263* | The product metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑉 = (Base‘𝑅) & ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) & ⊢ 𝐷 = (dist‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → 𝐼 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐸 ∈ (∞Met‘𝑉)) ⇒ ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝐵)) | ||
| Theorem | prdsxmet 24264* | The product metric is an extended metric. Eliminate disjoint variable conditions from prdsxmetlem 24263. (Contributed by Mario Carneiro, 26-Sep-2015.) |
| ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑉 = (Base‘𝑅) & ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) & ⊢ 𝐷 = (dist‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → 𝐼 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐸 ∈ (∞Met‘𝑉)) ⇒ ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝐵)) | ||
| Theorem | prdsmet 24265* | The product metric is a metric when the index set is finite. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑉 = (Base‘𝑅) & ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) & ⊢ 𝐷 = (dist‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐸 ∈ (Met‘𝑉)) ⇒ ⊢ (𝜑 → 𝐷 ∈ (Met‘𝐵)) | ||
| Theorem | ressprdsds 24266* | Restriction of a product metric. (Contributed by Mario Carneiro, 16-Sep-2015.) |
| ⊢ (𝜑 → 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅))) & ⊢ (𝜑 → 𝐻 = (𝑇Xs(𝑥 ∈ 𝐼 ↦ (𝑅 ↾s 𝐴)))) & ⊢ 𝐵 = (Base‘𝐻) & ⊢ 𝐷 = (dist‘𝑌) & ⊢ 𝐸 = (dist‘𝐻) & ⊢ (𝜑 → 𝑆 ∈ 𝑈) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐴 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐸 = (𝐷 ↾ (𝐵 × 𝐵))) | ||
| Theorem | resspwsds 24267 | Restriction of a power metric. (Contributed by Mario Carneiro, 16-Sep-2015.) |
| ⊢ (𝜑 → 𝑌 = (𝑅 ↑s 𝐼)) & ⊢ (𝜑 → 𝐻 = ((𝑅 ↾s 𝐴) ↑s 𝐼)) & ⊢ 𝐵 = (Base‘𝐻) & ⊢ 𝐷 = (dist‘𝑌) & ⊢ 𝐸 = (dist‘𝐻) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝐸 = (𝐷 ↾ (𝐵 × 𝐵))) | ||
| Theorem | imasdsf1olem 24268* | Lemma for imasdsf1o 24269. (Contributed by Mario Carneiro, 21-Aug-2015.) (Proof shortened by AV, 6-Oct-2020.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) & ⊢ 𝐷 = (dist‘𝑈) & ⊢ (𝜑 → 𝐸 ∈ (∞Met‘𝑉)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ 𝑊 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) & ⊢ 𝑆 = {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = (𝐹‘𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} & ⊢ 𝑇 = ∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) ⇒ ⊢ (𝜑 → ((𝐹‘𝑋)𝐷(𝐹‘𝑌)) = (𝑋𝐸𝑌)) | ||
| Theorem | imasdsf1o 24269 | The distance function is transferred across an image structure under a bijection. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) & ⊢ 𝐷 = (dist‘𝑈) & ⊢ (𝜑 → 𝐸 ∈ (∞Met‘𝑉)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐹‘𝑋)𝐷(𝐹‘𝑌)) = (𝑋𝐸𝑌)) | ||
| Theorem | imasf1oxmet 24270 | The image of an extended metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) & ⊢ 𝐷 = (dist‘𝑈) & ⊢ (𝜑 → 𝐸 ∈ (∞Met‘𝑉)) ⇒ ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝐵)) | ||
| Theorem | imasf1omet 24271 | The image of a metric is a metric. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) & ⊢ 𝐷 = (dist‘𝑈) & ⊢ (𝜑 → 𝐸 ∈ (Met‘𝑉)) ⇒ ⊢ (𝜑 → 𝐷 ∈ (Met‘𝐵)) | ||
| Theorem | xpsdsfn 24272 | Closure of the metric in a binary structure product. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ 𝑃 = (dist‘𝑇) ⇒ ⊢ (𝜑 → 𝑃 Fn ((𝑋 × 𝑌) × (𝑋 × 𝑌))) | ||
| Theorem | xpsdsfn2 24273 | Closure of the metric in a binary structure product. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ 𝑃 = (dist‘𝑇) ⇒ ⊢ (𝜑 → 𝑃 Fn ((Base‘𝑇) × (Base‘𝑇))) | ||
| Theorem | xpsxmetlem 24274* | Lemma for xpsxmet 24275. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| ⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ 𝑃 = (dist‘𝑇) & ⊢ 𝑀 = ((dist‘𝑅) ↾ (𝑋 × 𝑋)) & ⊢ 𝑁 = ((dist‘𝑆) ↾ (𝑌 × 𝑌)) & ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) ⇒ ⊢ (𝜑 → (dist‘((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉})) ∈ (∞Met‘ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}))) | ||
| Theorem | xpsxmet 24275 | A product metric of extended metrics is an extended metric. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| ⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ 𝑃 = (dist‘𝑇) & ⊢ 𝑀 = ((dist‘𝑅) ↾ (𝑋 × 𝑋)) & ⊢ 𝑁 = ((dist‘𝑆) ↾ (𝑌 × 𝑌)) & ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) ⇒ ⊢ (𝜑 → 𝑃 ∈ (∞Met‘(𝑋 × 𝑌))) | ||
| Theorem | xpsdsval 24276 | Value of the metric in a binary structure product. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ 𝑃 = (dist‘𝑇) & ⊢ 𝑀 = ((dist‘𝑅) ↾ (𝑋 × 𝑋)) & ⊢ 𝑁 = ((dist‘𝑆) ↾ (𝑌 × 𝑌)) & ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑌) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑌) ⇒ ⊢ (𝜑 → (〈𝐴, 𝐵〉𝑃〈𝐶, 𝐷〉) = sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < )) | ||
| Theorem | xpsmet 24277 | The direct product of two metric spaces. Definition 14-1.5 of [Gleason] p. 225. (Contributed by NM, 20-Jun-2007.) (Revised by Mario Carneiro, 20-Aug-2015.) |
| ⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ 𝑃 = (dist‘𝑇) & ⊢ 𝑀 = ((dist‘𝑅) ↾ (𝑋 × 𝑋)) & ⊢ 𝑁 = ((dist‘𝑆) ↾ (𝑌 × 𝑌)) & ⊢ (𝜑 → 𝑀 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝑁 ∈ (Met‘𝑌)) ⇒ ⊢ (𝜑 → 𝑃 ∈ (Met‘(𝑋 × 𝑌))) | ||
| Theorem | blfvalps 24278* | The value of the ball function. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux, 11-Feb-2018.) |
| ⊢ (𝐷 ∈ (PsMet‘𝑋) → (ball‘𝐷) = (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟})) | ||
| Theorem | blfval 24279* | The value of the ball function. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Proof shortened by Thierry Arnoux, 11-Feb-2018.) |
| ⊢ (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷) = (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟})) | ||
| Theorem | blvalps 24280* | The ball around a point 𝑃 is the set of all points whose distance from 𝑃 is less than the ball's radius 𝑅. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.) |
| ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) = {𝑥 ∈ 𝑋 ∣ (𝑃𝐷𝑥) < 𝑅}) | ||
| Theorem | blval 24281* | The ball around a point 𝑃 is the set of all points whose distance from 𝑃 is less than the ball's radius 𝑅. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) = {𝑥 ∈ 𝑋 ∣ (𝑃𝐷𝑥) < 𝑅}) | ||
| Theorem | elblps 24282 | Membership in a ball. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.) |
| ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) < 𝑅))) | ||
| Theorem | elbl 24283 | Membership in a ball. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) < 𝑅))) | ||
| Theorem | elbl2ps 24284 | Membership in a ball. (Contributed by NM, 9-Mar-2007.) (Revised by Thierry Arnoux, 11-Mar-2018.) |
| ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑃𝐷𝐴) < 𝑅)) | ||
| Theorem | elbl2 24285 | Membership in a ball. (Contributed by NM, 9-Mar-2007.) |
| ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑃𝐷𝐴) < 𝑅)) | ||
| Theorem | elbl3ps 24286 | Membership in a ball, with reversed distance function arguments. (Contributed by NM, 10-Nov-2007.) |
| ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴𝐷𝑃) < 𝑅)) | ||
| Theorem | elbl3 24287 | Membership in a ball, with reversed distance function arguments. (Contributed by NM, 10-Nov-2007.) |
| ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴𝐷𝑃) < 𝑅)) | ||
| Theorem | blcomps 24288 | Commute the arguments to the ball function. (Contributed by Mario Carneiro, 22-Jan-2014.) (Revised by Thierry Arnoux, 11-Mar-2018.) |
| ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ 𝑃 ∈ (𝐴(ball‘𝐷)𝑅))) | ||
| Theorem | blcom 24289 | Commute the arguments to the ball function. (Contributed by Mario Carneiro, 22-Jan-2014.) |
| ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ 𝑃 ∈ (𝐴(ball‘𝐷)𝑅))) | ||
| Theorem | xblpnfps 24290 | The infinity ball in an extended metric is the set of all points that are a finite distance from the center. (Contributed by Mario Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.) |
| ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝐴 ∈ (𝑃(ball‘𝐷)+∞) ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) ∈ ℝ))) | ||
| Theorem | xblpnf 24291 | The infinity ball in an extended metric is the set of all points that are a finite distance from the center. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝐴 ∈ (𝑃(ball‘𝐷)+∞) ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) ∈ ℝ))) | ||
| Theorem | blpnf 24292 | The infinity ball in a standard metric is just the whole space. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑃(ball‘𝐷)+∞) = 𝑋) | ||
| Theorem | bldisj 24293 | Two balls are disjoint if the center-to-center distance is more than the sum of the radii. (Contributed by Mario Carneiro, 30-Dec-2013.) |
| ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑆)) = ∅) | ||
| Theorem | blgt0 24294 | A nonempty ball implies that the radius is positive. (Contributed by NM, 11-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) |
| ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) ∧ 𝐴 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 < 𝑅) | ||
| Theorem | bl2in 24295 | Two balls are disjoint if they don't overlap. (Contributed by NM, 11-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) |
| ⊢ (((𝐷 ∈ (Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑅)) = ∅) | ||
| Theorem | xblss2ps 24296 | One ball is contained in another if the center-to-center distance is less than the difference of the radii. In this version of blss2 24299 for extended metrics, we have to assume the balls are a finite distance apart, or else 𝑃 will not even be in the infinity ball around 𝑄. (Contributed by Mario Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.) |
| ⊢ (𝜑 → 𝐷 ∈ (PsMet‘𝑋)) & ⊢ (𝜑 → 𝑃 ∈ 𝑋) & ⊢ (𝜑 → 𝑄 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) & ⊢ (𝜑 → 𝑆 ∈ ℝ*) & ⊢ (𝜑 → (𝑃𝐷𝑄) ∈ ℝ) & ⊢ (𝜑 → (𝑃𝐷𝑄) ≤ (𝑆 +𝑒 -𝑒𝑅)) ⇒ ⊢ (𝜑 → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑄(ball‘𝐷)𝑆)) | ||
| Theorem | xblss2 24297 | One ball is contained in another if the center-to-center distance is less than the difference of the radii. In this version of blss2 24299 for extended metrics, we have to assume the balls are a finite distance apart, or else 𝑃 will not even be in the infinity ball around 𝑄. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑃 ∈ 𝑋) & ⊢ (𝜑 → 𝑄 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) & ⊢ (𝜑 → 𝑆 ∈ ℝ*) & ⊢ (𝜑 → (𝑃𝐷𝑄) ∈ ℝ) & ⊢ (𝜑 → (𝑃𝐷𝑄) ≤ (𝑆 +𝑒 -𝑒𝑅)) ⇒ ⊢ (𝜑 → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑄(ball‘𝐷)𝑆)) | ||
| Theorem | blss2ps 24298 | One ball is contained in another if the center-to-center distance is less than the difference of the radii. (Contributed by Mario Carneiro, 15-Jan-2014.) (Revised by Mario Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.) |
| ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≤ (𝑆 − 𝑅))) → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑄(ball‘𝐷)𝑆)) | ||
| Theorem | blss2 24299 | One ball is contained in another if the center-to-center distance is less than the difference of the radii. (Contributed by Mario Carneiro, 15-Jan-2014.) (Revised by Mario Carneiro, 23-Aug-2015.) |
| ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≤ (𝑆 − 𝑅))) → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑄(ball‘𝐷)𝑆)) | ||
| Theorem | blhalf 24300 | A ball of radius 𝑅 / 2 is contained in a ball of radius 𝑅 centered at any point inside the smaller ball. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Jan-2014.) |
| ⊢ (((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌 ∈ 𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑌(ball‘𝑀)(𝑅 / 2)) ⊆ (𝑍(ball‘𝑀)𝑅)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |