| Metamath
Proof Explorer Theorem List (p. 243 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | cfilufbas 24201 | A Cauchy filter base is a filter base. (Contributed by Thierry Arnoux, 19-Nov-2017.) |
| ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu‘𝑈)) → 𝐹 ∈ (fBas‘𝑋)) | ||
| Theorem | cfiluexsm 24202* | For a Cauchy filter base and any entourage 𝑉, there is an element of the filter small in 𝑉. (Contributed by Thierry Arnoux, 19-Nov-2017.) |
| ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu‘𝑈) ∧ 𝑉 ∈ 𝑈) → ∃𝑎 ∈ 𝐹 (𝑎 × 𝑎) ⊆ 𝑉) | ||
| Theorem | fmucndlem 24203* | Lemma for fmucnd 24204. (Contributed by Thierry Arnoux, 19-Nov-2017.) |
| ⊢ ((𝐹 Fn 𝑋 ∧ 𝐴 ⊆ 𝑋) → ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) “ (𝐴 × 𝐴)) = ((𝐹 “ 𝐴) × (𝐹 “ 𝐴))) | ||
| Theorem | fmucnd 24204* | The image of a Cauchy filter base by an uniformly continuous function is a Cauchy filter base. Deduction form. Proposition 3 of [BourbakiTop1] p. II.13. (Contributed by Thierry Arnoux, 18-Nov-2017.) |
| ⊢ (𝜑 → 𝑈 ∈ (UnifOn‘𝑋)) & ⊢ (𝜑 → 𝑉 ∈ (UnifOn‘𝑌)) & ⊢ (𝜑 → 𝐹 ∈ (𝑈 Cnu𝑉)) & ⊢ (𝜑 → 𝐶 ∈ (CauFilu‘𝑈)) & ⊢ 𝐷 = ran (𝑎 ∈ 𝐶 ↦ (𝐹 “ 𝑎)) ⇒ ⊢ (𝜑 → 𝐷 ∈ (CauFilu‘𝑉)) | ||
| Theorem | cfilufg 24205 | The filter generated by a Cauchy filter base is still a Cauchy filter base. (Contributed by Thierry Arnoux, 24-Jan-2018.) |
| ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐹 ∈ (CauFilu‘𝑈)) → (𝑋filGen𝐹) ∈ (CauFilu‘𝑈)) | ||
| Theorem | trcfilu 24206 | Condition for the trace of a Cauchy filter base to be a Cauchy filter base for the restricted uniform structure. (Contributed by Thierry Arnoux, 24-Jan-2018.) |
| ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝐹 ∈ (CauFilu‘𝑈) ∧ ¬ ∅ ∈ (𝐹 ↾t 𝐴)) ∧ 𝐴 ⊆ 𝑋) → (𝐹 ↾t 𝐴) ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) | ||
| Theorem | cfiluweak 24207 | A Cauchy filter base is also a Cauchy filter base on any coarser uniform structure. (Contributed by Thierry Arnoux, 24-Jan-2018.) |
| ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ (CauFilu‘(𝑈 ↾t (𝐴 × 𝐴)))) → 𝐹 ∈ (CauFilu‘𝑈)) | ||
| Theorem | neipcfilu 24208 | In an uniform space, a neighboring filter is a Cauchy filter base. (Contributed by Thierry Arnoux, 24-Jan-2018.) |
| ⊢ 𝑋 = (Base‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) & ⊢ 𝑈 = (UnifSt‘𝑊) ⇒ ⊢ ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝑃 ∈ 𝑋) → ((nei‘𝐽)‘{𝑃}) ∈ (CauFilu‘𝑈)) | ||
| Syntax | ccusp 24209 | Extend class notation with the class of all complete uniform spaces. |
| class CUnifSp | ||
| Definition | df-cusp 24210* | Define the class of all complete uniform spaces. Definition 3 of [BourbakiTop1] p. II.15. (Contributed by Thierry Arnoux, 1-Dec-2017.) |
| ⊢ CUnifSp = {𝑤 ∈ UnifSp ∣ ∀𝑐 ∈ (Fil‘(Base‘𝑤))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑤)) → ((TopOpen‘𝑤) fLim 𝑐) ≠ ∅)} | ||
| Theorem | iscusp 24211* | The predicate "𝑊 is a complete uniform space." (Contributed by Thierry Arnoux, 3-Dec-2017.) |
| ⊢ (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘(Base‘𝑊))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑊)) → ((TopOpen‘𝑊) fLim 𝑐) ≠ ∅))) | ||
| Theorem | cuspusp 24212 | A complete uniform space is an uniform space. (Contributed by Thierry Arnoux, 3-Dec-2017.) |
| ⊢ (𝑊 ∈ CUnifSp → 𝑊 ∈ UnifSp) | ||
| Theorem | cuspcvg 24213 | In a complete uniform space, any Cauchy filter 𝐶 has a limit. (Contributed by Thierry Arnoux, 3-Dec-2017.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) ⇒ ⊢ ((𝑊 ∈ CUnifSp ∧ 𝐶 ∈ (CauFilu‘(UnifSt‘𝑊)) ∧ 𝐶 ∈ (Fil‘𝐵)) → (𝐽 fLim 𝐶) ≠ ∅) | ||
| Theorem | iscusp2 24214* | The predicate "𝑊 is a complete uniform space." (Contributed by Thierry Arnoux, 15-Dec-2017.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝑈 = (UnifSt‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑊) ⇒ ⊢ (𝑊 ∈ CUnifSp ↔ (𝑊 ∈ UnifSp ∧ ∀𝑐 ∈ (Fil‘𝐵)(𝑐 ∈ (CauFilu‘𝑈) → (𝐽 fLim 𝑐) ≠ ∅))) | ||
| Theorem | cnextucn 24215* | Extension by continuity. Proposition 11 of [BourbakiTop1] p. II.20. Given a topology 𝐽 on 𝑋, a subset 𝐴 dense in 𝑋, this states a condition for 𝐹 from 𝐴 to a space 𝑌 Hausdorff and complete to be extensible by continuity. (Contributed by Thierry Arnoux, 4-Dec-2017.) |
| ⊢ 𝑋 = (Base‘𝑉) & ⊢ 𝑌 = (Base‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑉) & ⊢ 𝐾 = (TopOpen‘𝑊) & ⊢ 𝑈 = (UnifSt‘𝑊) & ⊢ (𝜑 → 𝑉 ∈ TopSp) & ⊢ (𝜑 → 𝑊 ∈ TopSp) & ⊢ (𝜑 → 𝑊 ∈ CUnifSp) & ⊢ (𝜑 → 𝐾 ∈ Haus) & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑌) & ⊢ (𝜑 → ((cls‘𝐽)‘𝐴) = 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑌 FilMap 𝐹)‘(((nei‘𝐽)‘{𝑥}) ↾t 𝐴)) ∈ (CauFilu‘𝑈)) ⇒ ⊢ (𝜑 → ((𝐽CnExt𝐾)‘𝐹) ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | ucnextcn 24216 | Extension by continuity. Theorem 2 of [BourbakiTop1] p. II.20. Given an uniform space on a set 𝑋, a subset 𝐴 dense in 𝑋, and a function 𝐹 uniformly continuous from 𝐴 to 𝑌, that function can be extended by continuity to the whole 𝑋, and its extension is uniformly continuous. (Contributed by Thierry Arnoux, 25-Jan-2018.) |
| ⊢ 𝑋 = (Base‘𝑉) & ⊢ 𝑌 = (Base‘𝑊) & ⊢ 𝐽 = (TopOpen‘𝑉) & ⊢ 𝐾 = (TopOpen‘𝑊) & ⊢ 𝑆 = (UnifSt‘𝑉) & ⊢ 𝑇 = (UnifSt‘(𝑉 ↾s 𝐴)) & ⊢ 𝑈 = (UnifSt‘𝑊) & ⊢ (𝜑 → 𝑉 ∈ TopSp) & ⊢ (𝜑 → 𝑉 ∈ UnifSp) & ⊢ (𝜑 → 𝑊 ∈ TopSp) & ⊢ (𝜑 → 𝑊 ∈ CUnifSp) & ⊢ (𝜑 → 𝐾 ∈ Haus) & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ (𝜑 → 𝐹 ∈ (𝑇 Cnu𝑈)) & ⊢ (𝜑 → ((cls‘𝐽)‘𝐴) = 𝑋) ⇒ ⊢ (𝜑 → ((𝐽CnExt𝐾)‘𝐹) ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | ispsmet 24217* | Express the predicate "𝐷 is a pseudometric." (Contributed by Thierry Arnoux, 7-Feb-2018.) |
| ⊢ (𝑋 ∈ 𝑉 → (𝐷 ∈ (PsMet‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 ((𝑥𝐷𝑥) = 0 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))) | ||
| Theorem | psmetdmdm 24218 | Recover the base set from a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
| ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝑋 = dom dom 𝐷) | ||
| Theorem | psmetf 24219 | The distance function of a pseudometric as a function. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
| ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) | ||
| Theorem | psmetcl 24220 | Closure of the distance function of a pseudometric space. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
| ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ*) | ||
| Theorem | psmet0 24221 | The distance function of a pseudometric space is zero if its arguments are equal. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
| ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝐴) = 0) | ||
| Theorem | psmettri2 24222 | Triangle inequality for the distance function of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018.) |
| ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵))) | ||
| Theorem | psmetsym 24223 | The distance function of a pseudometric is symmetrical. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
| ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴)) | ||
| Theorem | psmettri 24224 | Triangle inequality for the distance function of a pseudometric space. (Contributed by Thierry Arnoux, 11-Feb-2018.) |
| ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐶𝐷𝐵))) | ||
| Theorem | psmetge0 24225 | The distance function of a pseudometric space is nonnegative. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
| ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 0 ≤ (𝐴𝐷𝐵)) | ||
| Theorem | psmetxrge0 24226 | The distance function of a pseudometric space is a function into the nonnegative extended real numbers. (Contributed by Thierry Arnoux, 24-Feb-2018.) |
| ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞)) | ||
| Theorem | psmetres2 24227 | Restriction of a pseudometric. (Contributed by Thierry Arnoux, 11-Feb-2018.) |
| ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (PsMet‘𝑅)) | ||
| Theorem | psmetlecl 24228 | Real closure of an extended metric value that is upper bounded by a real. (Contributed by Thierry Arnoux, 11-Mar-2018.) |
| ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ ℝ ∧ (𝐴𝐷𝐵) ≤ 𝐶)) → (𝐴𝐷𝐵) ∈ ℝ) | ||
| Theorem | distspace 24229 | A set 𝑋 together with a (distance) function 𝐷 which is a pseudometric is a distance space (according to E. Deza, M.M. Deza: "Dictionary of Distances", Elsevier, 2006), i.e. a (base) set 𝑋 equipped with a distance 𝐷, which is a mapping of two elements of the base set to the (extended) reals and which is nonnegative, symmetric and equal to 0 if the two elements are equal. (Contributed by AV, 15-Oct-2021.) (Revised by AV, 5-Jul-2022.) |
| ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ (𝐴𝐷𝐴) = 0) ∧ (0 ≤ (𝐴𝐷𝐵) ∧ (𝐴𝐷𝐵) = (𝐵𝐷𝐴)))) | ||
| Syntax | cxms 24230 | Extend class notation with the class of extended metric spaces. |
| class ∞MetSp | ||
| Syntax | cms 24231 | Extend class notation with the class of metric spaces. |
| class MetSp | ||
| Syntax | ctms 24232 | Extend class notation with the function mapping a metric to the metric space it defines. |
| class toMetSp | ||
| Definition | df-xms 24233 | Define the (proper) class of extended metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ ∞MetSp = {𝑓 ∈ TopSp ∣ (TopOpen‘𝑓) = (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))))} | ||
| Definition | df-ms 24234 | Define the (proper) class of metric spaces. (Contributed by NM, 27-Aug-2006.) |
| ⊢ MetSp = {𝑓 ∈ ∞MetSp ∣ ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) ∈ (Met‘(Base‘𝑓))} | ||
| Definition | df-tms 24235 | Define the function mapping a metric to the metric space which it defines. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| ⊢ toMetSp = (𝑑 ∈ ∪ ran ∞Met ↦ ({〈(Base‘ndx), dom dom 𝑑〉, 〈(dist‘ndx), 𝑑〉} sSet 〈(TopSet‘ndx), (MetOpen‘𝑑)〉)) | ||
| Theorem | ismet 24236* | Express the predicate "𝐷 is a metric." (Contributed by NM, 25-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.) |
| ⊢ (𝑋 ∈ 𝐴 → (𝐷 ∈ (Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))))) | ||
| Theorem | isxmet 24237* | Express the predicate "𝐷 is an extended metric." (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝑋 ∈ 𝐴 → (𝐷 ∈ (∞Met‘𝑋) ↔ (𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))))) | ||
| Theorem | ismeti 24238* | Properties that determine a metric. (Contributed by NM, 17-Nov-2006.) (Revised by Mario Carneiro, 14-Aug-2015.) |
| ⊢ 𝑋 ∈ V & ⊢ 𝐷:(𝑋 × 𝑋)⟶ℝ & ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦)) & ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))) ⇒ ⊢ 𝐷 ∈ (Met‘𝑋) | ||
| Theorem | isxmetd 24239* | Properties that determine an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) (Revised by AV, 9-Apr-2024.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐷:(𝑋 × 𝑋)⟶ℝ*) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) ⇒ ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) | ||
| Theorem | isxmet2d 24240* | It is safe to only require the triangle inequality when the values are real (so that we can use the standard addition over the reals), but in this case the nonnegativity constraint cannot be deduced and must be provided separately. (Counterexample: 𝐷(𝑥, 𝑦) = if(𝑥 = 𝑦, 0, -∞) satisfies all hypotheses except nonnegativity.) (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐷:(𝑋 × 𝑋)⟶ℝ*) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 0 ≤ (𝑥𝐷𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑥𝐷𝑦) ≤ 0 ↔ 𝑥 = 𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))) ⇒ ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) | ||
| Theorem | metflem 24241* | Lemma for metf 24243 and others. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.) |
| ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷:(𝑋 × 𝑋)⟶ℝ ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦) ∧ ∀𝑧 ∈ 𝑋 (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))))) | ||
| Theorem | xmetf 24242 | Mapping of the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) | ||
| Theorem | metf 24243 | Mapping of the distance function of a metric space. (Contributed by NM, 30-Aug-2006.) |
| ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ) | ||
| Theorem | xmetcl 24244 | Closure of the distance function of a metric space. Part of Property M1 of [Kreyszig] p. 3. (Contributed by NM, 30-Aug-2006.) |
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ*) | ||
| Theorem | metcl 24245 | Closure of the distance function of a metric space. Part of Property M1 of [Kreyszig] p. 3. (Contributed by NM, 30-Aug-2006.) |
| ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ) | ||
| Theorem | ismet2 24246 | An extended metric is a metric exactly when it takes real values for all values of the arguments. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷:(𝑋 × 𝑋)⟶ℝ)) | ||
| Theorem | metxmet 24247 | A metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | ||
| Theorem | xmetdmdm 24248 | Recover the base set from an extended metric. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = dom dom 𝐷) | ||
| Theorem | metdmdm 24249 | Recover the base set from a metric. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| ⊢ (𝐷 ∈ (Met‘𝑋) → 𝑋 = dom dom 𝐷) | ||
| Theorem | xmetunirn 24250 | Two ways to express an extended metric on an unspecified base. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| ⊢ (𝐷 ∈ ∪ ran ∞Met ↔ 𝐷 ∈ (∞Met‘dom dom 𝐷)) | ||
| Theorem | xmeteq0 24251 | The value of an extended metric is zero iff its arguments are equal. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵)) | ||
| Theorem | meteq0 24252 | The value of a metric is zero iff its arguments are equal. Property M2 of [Kreyszig] p. 4. (Contributed by NM, 30-Aug-2006.) |
| ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵)) | ||
| Theorem | xmettri2 24253 | Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵))) | ||
| Theorem | mettri2 24254 | Triangle inequality for the distance function of a metric space. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) + (𝐶𝐷𝐵))) | ||
| Theorem | xmet0 24255 | The distance function of a metric space is zero if its arguments are equal. Definition 14-1.1(a) of [Gleason] p. 223. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝐴) = 0) | ||
| Theorem | met0 24256 | The distance function of a metric space is zero if its arguments are equal. Definition 14-1.1(a) of [Gleason] p. 223. (Contributed by NM, 30-Aug-2006.) |
| ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝐴) = 0) | ||
| Theorem | xmetge0 24257 | The distance function of a metric space is nonnegative. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 0 ≤ (𝐴𝐷𝐵)) | ||
| Theorem | metge0 24258 | The distance function of a metric space is nonnegative. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.) |
| ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 0 ≤ (𝐴𝐷𝐵)) | ||
| Theorem | xmetlecl 24259 | Real closure of an extended metric value that is upper bounded by a real. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ ℝ ∧ (𝐴𝐷𝐵) ≤ 𝐶)) → (𝐴𝐷𝐵) ∈ ℝ) | ||
| Theorem | xmetsym 24260 | The distance function of an extended metric space is symmetric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴)) | ||
| Theorem | xmetpsmet 24261 | An extended metric is a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
| ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷 ∈ (PsMet‘𝑋)) | ||
| Theorem | xmettpos 24262 | The distance function of an extended metric space is symmetric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝐷 ∈ (∞Met‘𝑋) → tpos 𝐷 = 𝐷) | ||
| Theorem | metsym 24263 | The distance function of a metric space is symmetric. Definition 14-1.1(c) of [Gleason] p. 223. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴)) | ||
| Theorem | xmettri 24264 | Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of [Gleason] p. 223. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐶𝐷𝐵))) | ||
| Theorem | mettri 24265 | Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of [Gleason] p. 223. (Contributed by NM, 27-Aug-2006.) |
| ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) + (𝐶𝐷𝐵))) | ||
| Theorem | xmettri3 24266 | Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐵𝐷𝐶))) | ||
| Theorem | mettri3 24267 | Triangle inequality for the distance function of a metric space. (Contributed by NM, 13-Mar-2007.) |
| ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) + (𝐵𝐷𝐶))) | ||
| Theorem | xmetrtri 24268 | One half of the reverse triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 4-Sep-2015.) |
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷𝐶) +𝑒 -𝑒(𝐵𝐷𝐶)) ≤ (𝐴𝐷𝐵)) | ||
| Theorem | xmetrtri2 24269 | The reverse triangle inequality for the distance function of an extended metric. In order to express the "extended absolute value function", we use the distance function xrsdsval 21345 defined on the extended real structure. (Contributed by Mario Carneiro, 4-Sep-2015.) |
| ⊢ 𝐾 = (dist‘ℝ*𝑠) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐷𝐶)𝐾(𝐵𝐷𝐶)) ≤ (𝐴𝐷𝐵)) | ||
| Theorem | metrtri 24270 | Reverse triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 5-May-2014.) |
| ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (abs‘((𝐴𝐷𝐶) − (𝐵𝐷𝐶))) ≤ (𝐴𝐷𝐵)) | ||
| Theorem | xmetgt0 24271 | The distance function of an extended metric space is positive for unequal points. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ≠ 𝐵 ↔ 0 < (𝐴𝐷𝐵))) | ||
| Theorem | metgt0 24272 | The distance function of a metric space is positive for unequal points. Definition 14-1.1(b) of [Gleason] p. 223 and its converse. (Contributed by NM, 27-Aug-2006.) |
| ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ≠ 𝐵 ↔ 0 < (𝐴𝐷𝐵))) | ||
| Theorem | metn0 24273 | A metric space is nonempty iff its base set is nonempty. (Contributed by NM, 4-Oct-2007.) (Revised by Mario Carneiro, 14-Aug-2015.) |
| ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 ≠ ∅ ↔ 𝑋 ≠ ∅)) | ||
| Theorem | xmetres2 24274 | Restriction of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘𝑅)) | ||
| Theorem | metreslem 24275 | Lemma for metres 24278. (Contributed by Mario Carneiro, 24-Aug-2015.) |
| ⊢ (dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋 ∩ 𝑅) × (𝑋 ∩ 𝑅)))) | ||
| Theorem | metres2 24276 | Lemma for metres 24278. (Contributed by FL, 12-Oct-2006.) (Proof shortened by Mario Carneiro, 14-Aug-2015.) |
| ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑅 ⊆ 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘𝑅)) | ||
| Theorem | xmetres 24277 | A restriction of an extended metric is an extended metric. (Contributed by Mario Carneiro, 24-Aug-2015.) |
| ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘(𝑋 ∩ 𝑅))) | ||
| Theorem | metres 24278 | A restriction of a metric is a metric. (Contributed by NM, 26-Aug-2007.) (Revised by Mario Carneiro, 14-Aug-2015.) |
| ⊢ (𝐷 ∈ (Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘(𝑋 ∩ 𝑅))) | ||
| Theorem | 0met 24279 | The empty metric. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.) |
| ⊢ ∅ ∈ (Met‘∅) | ||
| Theorem | prdsdsf 24280* | The product metric is a function into the nonnegative extended reals. In general this means that it is not a metric but rather an *extended* metric (even when all the factors are metrics), but it will be a metric when restricted to regions where it does not take infinite values. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑉 = (Base‘𝑅) & ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) & ⊢ 𝐷 = (dist‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → 𝐼 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐸 ∈ (∞Met‘𝑉)) ⇒ ⊢ (𝜑 → 𝐷:(𝐵 × 𝐵)⟶(0[,]+∞)) | ||
| Theorem | prdsxmetlem 24281* | The product metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑉 = (Base‘𝑅) & ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) & ⊢ 𝐷 = (dist‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → 𝐼 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐸 ∈ (∞Met‘𝑉)) ⇒ ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝐵)) | ||
| Theorem | prdsxmet 24282* | The product metric is an extended metric. Eliminate disjoint variable conditions from prdsxmetlem 24281. (Contributed by Mario Carneiro, 26-Sep-2015.) |
| ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑉 = (Base‘𝑅) & ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) & ⊢ 𝐷 = (dist‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → 𝐼 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐸 ∈ (∞Met‘𝑉)) ⇒ ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝐵)) | ||
| Theorem | prdsmet 24283* | The product metric is a metric when the index set is finite. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑉 = (Base‘𝑅) & ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) & ⊢ 𝐷 = (dist‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → 𝐼 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ 𝑍) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐸 ∈ (Met‘𝑉)) ⇒ ⊢ (𝜑 → 𝐷 ∈ (Met‘𝐵)) | ||
| Theorem | ressprdsds 24284* | Restriction of a product metric. (Contributed by Mario Carneiro, 16-Sep-2015.) |
| ⊢ (𝜑 → 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅))) & ⊢ (𝜑 → 𝐻 = (𝑇Xs(𝑥 ∈ 𝐼 ↦ (𝑅 ↾s 𝐴)))) & ⊢ 𝐵 = (Base‘𝐻) & ⊢ 𝐷 = (dist‘𝑌) & ⊢ 𝐸 = (dist‘𝐻) & ⊢ (𝜑 → 𝑆 ∈ 𝑈) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐴 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝐸 = (𝐷 ↾ (𝐵 × 𝐵))) | ||
| Theorem | resspwsds 24285 | Restriction of a power metric. (Contributed by Mario Carneiro, 16-Sep-2015.) |
| ⊢ (𝜑 → 𝑌 = (𝑅 ↑s 𝐼)) & ⊢ (𝜑 → 𝐻 = ((𝑅 ↾s 𝐴) ↑s 𝐼)) & ⊢ 𝐵 = (Base‘𝐻) & ⊢ 𝐷 = (dist‘𝑌) & ⊢ 𝐸 = (dist‘𝐻) & ⊢ (𝜑 → 𝐼 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝐸 = (𝐷 ↾ (𝐵 × 𝐵))) | ||
| Theorem | imasdsf1olem 24286* | Lemma for imasdsf1o 24287. (Contributed by Mario Carneiro, 21-Aug-2015.) (Proof shortened by AV, 6-Oct-2020.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) & ⊢ 𝐷 = (dist‘𝑈) & ⊢ (𝜑 → 𝐸 ∈ (∞Met‘𝑉)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ 𝑊 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) & ⊢ 𝑆 = {ℎ ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = (𝐹‘𝑋) ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = (𝐹‘𝑌) ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} & ⊢ 𝑇 = ∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) ⇒ ⊢ (𝜑 → ((𝐹‘𝑋)𝐷(𝐹‘𝑌)) = (𝑋𝐸𝑌)) | ||
| Theorem | imasdsf1o 24287 | The distance function is transferred across an image structure under a bijection. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) & ⊢ 𝐷 = (dist‘𝑈) & ⊢ (𝜑 → 𝐸 ∈ (∞Met‘𝑉)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐹‘𝑋)𝐷(𝐹‘𝑌)) = (𝑋𝐸𝑌)) | ||
| Theorem | imasf1oxmet 24288 | The image of an extended metric is an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) & ⊢ 𝐷 = (dist‘𝑈) & ⊢ (𝜑 → 𝐸 ∈ (∞Met‘𝑉)) ⇒ ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝐵)) | ||
| Theorem | imasf1omet 24289 | The image of a metric is a metric. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) & ⊢ 𝐸 = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) & ⊢ 𝐷 = (dist‘𝑈) & ⊢ (𝜑 → 𝐸 ∈ (Met‘𝑉)) ⇒ ⊢ (𝜑 → 𝐷 ∈ (Met‘𝐵)) | ||
| Theorem | xpsdsfn 24290 | Closure of the metric in a binary structure product. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ 𝑃 = (dist‘𝑇) ⇒ ⊢ (𝜑 → 𝑃 Fn ((𝑋 × 𝑌) × (𝑋 × 𝑌))) | ||
| Theorem | xpsdsfn2 24291 | Closure of the metric in a binary structure product. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ 𝑃 = (dist‘𝑇) ⇒ ⊢ (𝜑 → 𝑃 Fn ((Base‘𝑇) × (Base‘𝑇))) | ||
| Theorem | xpsxmetlem 24292* | Lemma for xpsxmet 24293. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| ⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ 𝑃 = (dist‘𝑇) & ⊢ 𝑀 = ((dist‘𝑅) ↾ (𝑋 × 𝑋)) & ⊢ 𝑁 = ((dist‘𝑆) ↾ (𝑌 × 𝑌)) & ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) ⇒ ⊢ (𝜑 → (dist‘((Scalar‘𝑅)Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉})) ∈ (∞Met‘ran (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}))) | ||
| Theorem | xpsxmet 24293 | A product metric of extended metrics is an extended metric. (Contributed by Mario Carneiro, 21-Aug-2015.) |
| ⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ 𝑃 = (dist‘𝑇) & ⊢ 𝑀 = ((dist‘𝑅) ↾ (𝑋 × 𝑋)) & ⊢ 𝑁 = ((dist‘𝑆) ↾ (𝑌 × 𝑌)) & ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) ⇒ ⊢ (𝜑 → 𝑃 ∈ (∞Met‘(𝑋 × 𝑌))) | ||
| Theorem | xpsdsval 24294 | Value of the metric in a binary structure product. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ 𝑃 = (dist‘𝑇) & ⊢ 𝑀 = ((dist‘𝑅) ↾ (𝑋 × 𝑋)) & ⊢ 𝑁 = ((dist‘𝑆) ↾ (𝑌 × 𝑌)) & ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑌) & ⊢ (𝜑 → 𝐶 ∈ 𝑋) & ⊢ (𝜑 → 𝐷 ∈ 𝑌) ⇒ ⊢ (𝜑 → (〈𝐴, 𝐵〉𝑃〈𝐶, 𝐷〉) = sup({(𝐴𝑀𝐶), (𝐵𝑁𝐷)}, ℝ*, < )) | ||
| Theorem | xpsmet 24295 | The direct product of two metric spaces. Definition 14-1.5 of [Gleason] p. 225. (Contributed by NM, 20-Jun-2007.) (Revised by Mario Carneiro, 20-Aug-2015.) |
| ⊢ 𝑇 = (𝑅 ×s 𝑆) & ⊢ 𝑋 = (Base‘𝑅) & ⊢ 𝑌 = (Base‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ 𝑃 = (dist‘𝑇) & ⊢ 𝑀 = ((dist‘𝑅) ↾ (𝑋 × 𝑋)) & ⊢ 𝑁 = ((dist‘𝑆) ↾ (𝑌 × 𝑌)) & ⊢ (𝜑 → 𝑀 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝑁 ∈ (Met‘𝑌)) ⇒ ⊢ (𝜑 → 𝑃 ∈ (Met‘(𝑋 × 𝑌))) | ||
| Theorem | blfvalps 24296* | The value of the ball function. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux, 11-Feb-2018.) |
| ⊢ (𝐷 ∈ (PsMet‘𝑋) → (ball‘𝐷) = (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟})) | ||
| Theorem | blfval 24297* | The value of the ball function. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Proof shortened by Thierry Arnoux, 11-Feb-2018.) |
| ⊢ (𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷) = (𝑥 ∈ 𝑋, 𝑟 ∈ ℝ* ↦ {𝑦 ∈ 𝑋 ∣ (𝑥𝐷𝑦) < 𝑟})) | ||
| Theorem | blvalps 24298* | The ball around a point 𝑃 is the set of all points whose distance from 𝑃 is less than the ball's radius 𝑅. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.) |
| ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) = {𝑥 ∈ 𝑋 ∣ (𝑃𝐷𝑥) < 𝑅}) | ||
| Theorem | blval 24299* | The ball around a point 𝑃 is the set of all points whose distance from 𝑃 is less than the ball's radius 𝑅. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
| ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) = {𝑥 ∈ 𝑋 ∣ (𝑃𝐷𝑥) < 𝑅}) | ||
| Theorem | elblps 24300 | Membership in a ball. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.) |
| ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴 ∈ 𝑋 ∧ (𝑃𝐷𝐴) < 𝑅))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |