Detailed syntax breakdown of Definition df-xrh
Step | Hyp | Ref
| Expression |
1 | | cxrh 31536 |
. 2
class
ℝ*Hom |
2 | | vr |
. . 3
setvar 𝑟 |
3 | | cvv 3398 |
. . 3
class
V |
4 | | vx |
. . . 4
setvar 𝑥 |
5 | | cxr 10752 |
. . . 4
class
ℝ* |
6 | 4 | cv 1541 |
. . . . . 6
class 𝑥 |
7 | | cr 10614 |
. . . . . 6
class
ℝ |
8 | 6, 7 | wcel 2114 |
. . . . 5
wff 𝑥 ∈ ℝ |
9 | 2 | cv 1541 |
. . . . . . 7
class 𝑟 |
10 | | crrh 31513 |
. . . . . . 7
class
ℝHom |
11 | 9, 10 | cfv 6339 |
. . . . . 6
class
(ℝHom‘𝑟) |
12 | 6, 11 | cfv 6339 |
. . . . 5
class
((ℝHom‘𝑟)‘𝑥) |
13 | | cpnf 10750 |
. . . . . . 7
class
+∞ |
14 | 6, 13 | wceq 1542 |
. . . . . 6
wff 𝑥 = +∞ |
15 | 11, 7 | cima 5528 |
. . . . . . 7
class
((ℝHom‘𝑟) “ ℝ) |
16 | | club 17668 |
. . . . . . . 8
class
lub |
17 | 9, 16 | cfv 6339 |
. . . . . . 7
class
(lub‘𝑟) |
18 | 15, 17 | cfv 6339 |
. . . . . 6
class
((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)) |
19 | | cglb 17669 |
. . . . . . . 8
class
glb |
20 | 9, 19 | cfv 6339 |
. . . . . . 7
class
(glb‘𝑟) |
21 | 15, 20 | cfv 6339 |
. . . . . 6
class
((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ)) |
22 | 14, 18, 21 | cif 4414 |
. . . . 5
class if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)),
((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ))) |
23 | 8, 12, 22 | cif 4414 |
. . . 4
class if(𝑥 ∈ ℝ,
((ℝHom‘𝑟)‘𝑥), if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “
ℝ)))) |
24 | 4, 5, 23 | cmpt 5110 |
. . 3
class (𝑥 ∈ ℝ*
↦ if(𝑥 ∈
ℝ, ((ℝHom‘𝑟)‘𝑥), if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “
ℝ))))) |
25 | 2, 3, 24 | cmpt 5110 |
. 2
class (𝑟 ∈ V ↦ (𝑥 ∈ ℝ*
↦ if(𝑥 ∈
ℝ, ((ℝHom‘𝑟)‘𝑥), if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “
ℝ)))))) |
26 | 1, 25 | wceq 1542 |
1
wff
ℝ*Hom = (𝑟 ∈ V ↦ (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ,
((ℝHom‘𝑟)‘𝑥), if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “
ℝ)))))) |