Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrhval Structured version   Visualization version   GIF version

Theorem xrhval 33750
Description: The value of the embedding from the extended real numbers into a complete lattice. (Contributed by Thierry Arnoux, 19-Feb-2018.)
Hypotheses
Ref Expression
xrhval.b 𝐵 = ((ℝHom‘𝑅) “ ℝ)
xrhval.l 𝐿 = (glb‘𝑅)
xrhval.u 𝑈 = (lub‘𝑅)
Assertion
Ref Expression
xrhval (𝑅𝑉 → (ℝ*Hom‘𝑅) = (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈𝐵), (𝐿𝐵)))))
Distinct variable group:   𝑥,𝑅
Allowed substitution hints:   𝐵(𝑥)   𝑈(𝑥)   𝐿(𝑥)   𝑉(𝑥)

Proof of Theorem xrhval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 elex 3480 . 2 (𝑅𝑉𝑅 ∈ V)
2 fveq2 6896 . . . . . 6 (𝑟 = 𝑅 → (ℝHom‘𝑟) = (ℝHom‘𝑅))
32fveq1d 6898 . . . . 5 (𝑟 = 𝑅 → ((ℝHom‘𝑟)‘𝑥) = ((ℝHom‘𝑅)‘𝑥))
4 fveq2 6896 . . . . . . . 8 (𝑟 = 𝑅 → (lub‘𝑟) = (lub‘𝑅))
5 xrhval.u . . . . . . . 8 𝑈 = (lub‘𝑅)
64, 5eqtr4di 2783 . . . . . . 7 (𝑟 = 𝑅 → (lub‘𝑟) = 𝑈)
72imaeq1d 6063 . . . . . . . 8 (𝑟 = 𝑅 → ((ℝHom‘𝑟) “ ℝ) = ((ℝHom‘𝑅) “ ℝ))
8 xrhval.b . . . . . . . 8 𝐵 = ((ℝHom‘𝑅) “ ℝ)
97, 8eqtr4di 2783 . . . . . . 7 (𝑟 = 𝑅 → ((ℝHom‘𝑟) “ ℝ) = 𝐵)
106, 9fveq12d 6903 . . . . . 6 (𝑟 = 𝑅 → ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)) = (𝑈𝐵))
11 fveq2 6896 . . . . . . . 8 (𝑟 = 𝑅 → (glb‘𝑟) = (glb‘𝑅))
12 xrhval.l . . . . . . . 8 𝐿 = (glb‘𝑅)
1311, 12eqtr4di 2783 . . . . . . 7 (𝑟 = 𝑅 → (glb‘𝑟) = 𝐿)
1413, 9fveq12d 6903 . . . . . 6 (𝑟 = 𝑅 → ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ)) = (𝐿𝐵))
1510, 14ifeq12d 4551 . . . . 5 (𝑟 = 𝑅 → if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ))) = if(𝑥 = +∞, (𝑈𝐵), (𝐿𝐵)))
163, 15ifeq12d 4551 . . . 4 (𝑟 = 𝑅 → if(𝑥 ∈ ℝ, ((ℝHom‘𝑟)‘𝑥), if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ)))) = if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈𝐵), (𝐿𝐵))))
1716mpteq2dv 5251 . . 3 (𝑟 = 𝑅 → (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑟)‘𝑥), if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ))))) = (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈𝐵), (𝐿𝐵)))))
18 df-xrh 33749 . . 3 *Hom = (𝑟 ∈ V ↦ (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑟)‘𝑥), if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ))))))
19 xrex 13004 . . . 4 * ∈ V
2019mptex 7235 . . 3 (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈𝐵), (𝐿𝐵)))) ∈ V
2117, 18, 20fvmpt 7004 . 2 (𝑅 ∈ V → (ℝ*Hom‘𝑅) = (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈𝐵), (𝐿𝐵)))))
221, 21syl 17 1 (𝑅𝑉 → (ℝ*Hom‘𝑅) = (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈𝐵), (𝐿𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  Vcvv 3461  ifcif 4530  cmpt 5232  cima 5681  cfv 6549  cr 11139  +∞cpnf 11277  *cxr 11279  lubclub 18304  glbcglb 18305  ℝHomcrrh 33725  *Homcxrh 33748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-xr 11284  df-xrh 33749
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator