Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrhval Structured version   Visualization version   GIF version

Theorem xrhval 31868
Description: The value of the embedding from the extended real numbers into a complete lattice. (Contributed by Thierry Arnoux, 19-Feb-2018.)
Hypotheses
Ref Expression
xrhval.b 𝐵 = ((ℝHom‘𝑅) “ ℝ)
xrhval.l 𝐿 = (glb‘𝑅)
xrhval.u 𝑈 = (lub‘𝑅)
Assertion
Ref Expression
xrhval (𝑅𝑉 → (ℝ*Hom‘𝑅) = (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈𝐵), (𝐿𝐵)))))
Distinct variable group:   𝑥,𝑅
Allowed substitution hints:   𝐵(𝑥)   𝑈(𝑥)   𝐿(𝑥)   𝑉(𝑥)

Proof of Theorem xrhval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 elex 3440 . 2 (𝑅𝑉𝑅 ∈ V)
2 fveq2 6756 . . . . . 6 (𝑟 = 𝑅 → (ℝHom‘𝑟) = (ℝHom‘𝑅))
32fveq1d 6758 . . . . 5 (𝑟 = 𝑅 → ((ℝHom‘𝑟)‘𝑥) = ((ℝHom‘𝑅)‘𝑥))
4 fveq2 6756 . . . . . . . 8 (𝑟 = 𝑅 → (lub‘𝑟) = (lub‘𝑅))
5 xrhval.u . . . . . . . 8 𝑈 = (lub‘𝑅)
64, 5eqtr4di 2797 . . . . . . 7 (𝑟 = 𝑅 → (lub‘𝑟) = 𝑈)
72imaeq1d 5957 . . . . . . . 8 (𝑟 = 𝑅 → ((ℝHom‘𝑟) “ ℝ) = ((ℝHom‘𝑅) “ ℝ))
8 xrhval.b . . . . . . . 8 𝐵 = ((ℝHom‘𝑅) “ ℝ)
97, 8eqtr4di 2797 . . . . . . 7 (𝑟 = 𝑅 → ((ℝHom‘𝑟) “ ℝ) = 𝐵)
106, 9fveq12d 6763 . . . . . 6 (𝑟 = 𝑅 → ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)) = (𝑈𝐵))
11 fveq2 6756 . . . . . . . 8 (𝑟 = 𝑅 → (glb‘𝑟) = (glb‘𝑅))
12 xrhval.l . . . . . . . 8 𝐿 = (glb‘𝑅)
1311, 12eqtr4di 2797 . . . . . . 7 (𝑟 = 𝑅 → (glb‘𝑟) = 𝐿)
1413, 9fveq12d 6763 . . . . . 6 (𝑟 = 𝑅 → ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ)) = (𝐿𝐵))
1510, 14ifeq12d 4477 . . . . 5 (𝑟 = 𝑅 → if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ))) = if(𝑥 = +∞, (𝑈𝐵), (𝐿𝐵)))
163, 15ifeq12d 4477 . . . 4 (𝑟 = 𝑅 → if(𝑥 ∈ ℝ, ((ℝHom‘𝑟)‘𝑥), if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ)))) = if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈𝐵), (𝐿𝐵))))
1716mpteq2dv 5172 . . 3 (𝑟 = 𝑅 → (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑟)‘𝑥), if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ))))) = (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈𝐵), (𝐿𝐵)))))
18 df-xrh 31867 . . 3 *Hom = (𝑟 ∈ V ↦ (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑟)‘𝑥), if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ))))))
19 xrex 12656 . . . 4 * ∈ V
2019mptex 7081 . . 3 (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈𝐵), (𝐿𝐵)))) ∈ V
2117, 18, 20fvmpt 6857 . 2 (𝑅 ∈ V → (ℝ*Hom‘𝑅) = (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈𝐵), (𝐿𝐵)))))
221, 21syl 17 1 (𝑅𝑉 → (ℝ*Hom‘𝑅) = (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈𝐵), (𝐿𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  ifcif 4456  cmpt 5153  cima 5583  cfv 6418  cr 10801  +∞cpnf 10937  *cxr 10939  lubclub 17942  glbcglb 17943  ℝHomcrrh 31843  *Homcxrh 31866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-xr 10944  df-xrh 31867
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator