| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrhval | Structured version Visualization version GIF version | ||
| Description: The value of the embedding from the extended real numbers into a complete lattice. (Contributed by Thierry Arnoux, 19-Feb-2018.) |
| Ref | Expression |
|---|---|
| xrhval.b | ⊢ 𝐵 = ((ℝHom‘𝑅) “ ℝ) |
| xrhval.l | ⊢ 𝐿 = (glb‘𝑅) |
| xrhval.u | ⊢ 𝑈 = (lub‘𝑅) |
| Ref | Expression |
|---|---|
| xrhval | ⊢ (𝑅 ∈ 𝑉 → (ℝ*Hom‘𝑅) = (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈‘𝐵), (𝐿‘𝐵))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3484 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
| 2 | fveq2 6886 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (ℝHom‘𝑟) = (ℝHom‘𝑅)) | |
| 3 | 2 | fveq1d 6888 | . . . . 5 ⊢ (𝑟 = 𝑅 → ((ℝHom‘𝑟)‘𝑥) = ((ℝHom‘𝑅)‘𝑥)) |
| 4 | fveq2 6886 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (lub‘𝑟) = (lub‘𝑅)) | |
| 5 | xrhval.u | . . . . . . . 8 ⊢ 𝑈 = (lub‘𝑅) | |
| 6 | 4, 5 | eqtr4di 2787 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (lub‘𝑟) = 𝑈) |
| 7 | 2 | imaeq1d 6057 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → ((ℝHom‘𝑟) “ ℝ) = ((ℝHom‘𝑅) “ ℝ)) |
| 8 | xrhval.b | . . . . . . . 8 ⊢ 𝐵 = ((ℝHom‘𝑅) “ ℝ) | |
| 9 | 7, 8 | eqtr4di 2787 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → ((ℝHom‘𝑟) “ ℝ) = 𝐵) |
| 10 | 6, 9 | fveq12d 6893 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)) = (𝑈‘𝐵)) |
| 11 | fveq2 6886 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (glb‘𝑟) = (glb‘𝑅)) | |
| 12 | xrhval.l | . . . . . . . 8 ⊢ 𝐿 = (glb‘𝑅) | |
| 13 | 11, 12 | eqtr4di 2787 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (glb‘𝑟) = 𝐿) |
| 14 | 13, 9 | fveq12d 6893 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ)) = (𝐿‘𝐵)) |
| 15 | 10, 14 | ifeq12d 4527 | . . . . 5 ⊢ (𝑟 = 𝑅 → if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ))) = if(𝑥 = +∞, (𝑈‘𝐵), (𝐿‘𝐵))) |
| 16 | 3, 15 | ifeq12d 4527 | . . . 4 ⊢ (𝑟 = 𝑅 → if(𝑥 ∈ ℝ, ((ℝHom‘𝑟)‘𝑥), if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ)))) = if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈‘𝐵), (𝐿‘𝐵)))) |
| 17 | 16 | mpteq2dv 5224 | . . 3 ⊢ (𝑟 = 𝑅 → (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑟)‘𝑥), if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ))))) = (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈‘𝐵), (𝐿‘𝐵))))) |
| 18 | df-xrh 33993 | . . 3 ⊢ ℝ*Hom = (𝑟 ∈ V ↦ (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑟)‘𝑥), if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ)))))) | |
| 19 | xrex 13011 | . . . 4 ⊢ ℝ* ∈ V | |
| 20 | 19 | mptex 7225 | . . 3 ⊢ (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈‘𝐵), (𝐿‘𝐵)))) ∈ V |
| 21 | 17, 18, 20 | fvmpt 6996 | . 2 ⊢ (𝑅 ∈ V → (ℝ*Hom‘𝑅) = (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈‘𝐵), (𝐿‘𝐵))))) |
| 22 | 1, 21 | syl 17 | 1 ⊢ (𝑅 ∈ 𝑉 → (ℝ*Hom‘𝑅) = (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈‘𝐵), (𝐿‘𝐵))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ifcif 4505 ↦ cmpt 5205 “ cima 5668 ‘cfv 6541 ℝcr 11136 +∞cpnf 11274 ℝ*cxr 11276 lubclub 18326 glbcglb 18327 ℝHomcrrh 33969 ℝ*Homcxrh 33992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-xr 11281 df-xrh 33993 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |