| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrhval | Structured version Visualization version GIF version | ||
| Description: The value of the embedding from the extended real numbers into a complete lattice. (Contributed by Thierry Arnoux, 19-Feb-2018.) |
| Ref | Expression |
|---|---|
| xrhval.b | ⊢ 𝐵 = ((ℝHom‘𝑅) “ ℝ) |
| xrhval.l | ⊢ 𝐿 = (glb‘𝑅) |
| xrhval.u | ⊢ 𝑈 = (lub‘𝑅) |
| Ref | Expression |
|---|---|
| xrhval | ⊢ (𝑅 ∈ 𝑉 → (ℝ*Hom‘𝑅) = (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈‘𝐵), (𝐿‘𝐵))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3471 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
| 2 | fveq2 6860 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (ℝHom‘𝑟) = (ℝHom‘𝑅)) | |
| 3 | 2 | fveq1d 6862 | . . . . 5 ⊢ (𝑟 = 𝑅 → ((ℝHom‘𝑟)‘𝑥) = ((ℝHom‘𝑅)‘𝑥)) |
| 4 | fveq2 6860 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (lub‘𝑟) = (lub‘𝑅)) | |
| 5 | xrhval.u | . . . . . . . 8 ⊢ 𝑈 = (lub‘𝑅) | |
| 6 | 4, 5 | eqtr4di 2783 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (lub‘𝑟) = 𝑈) |
| 7 | 2 | imaeq1d 6032 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → ((ℝHom‘𝑟) “ ℝ) = ((ℝHom‘𝑅) “ ℝ)) |
| 8 | xrhval.b | . . . . . . . 8 ⊢ 𝐵 = ((ℝHom‘𝑅) “ ℝ) | |
| 9 | 7, 8 | eqtr4di 2783 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → ((ℝHom‘𝑟) “ ℝ) = 𝐵) |
| 10 | 6, 9 | fveq12d 6867 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)) = (𝑈‘𝐵)) |
| 11 | fveq2 6860 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (glb‘𝑟) = (glb‘𝑅)) | |
| 12 | xrhval.l | . . . . . . . 8 ⊢ 𝐿 = (glb‘𝑅) | |
| 13 | 11, 12 | eqtr4di 2783 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (glb‘𝑟) = 𝐿) |
| 14 | 13, 9 | fveq12d 6867 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ)) = (𝐿‘𝐵)) |
| 15 | 10, 14 | ifeq12d 4512 | . . . . 5 ⊢ (𝑟 = 𝑅 → if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ))) = if(𝑥 = +∞, (𝑈‘𝐵), (𝐿‘𝐵))) |
| 16 | 3, 15 | ifeq12d 4512 | . . . 4 ⊢ (𝑟 = 𝑅 → if(𝑥 ∈ ℝ, ((ℝHom‘𝑟)‘𝑥), if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ)))) = if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈‘𝐵), (𝐿‘𝐵)))) |
| 17 | 16 | mpteq2dv 5203 | . . 3 ⊢ (𝑟 = 𝑅 → (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑟)‘𝑥), if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ))))) = (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈‘𝐵), (𝐿‘𝐵))))) |
| 18 | df-xrh 34013 | . . 3 ⊢ ℝ*Hom = (𝑟 ∈ V ↦ (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑟)‘𝑥), if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ)))))) | |
| 19 | xrex 12952 | . . . 4 ⊢ ℝ* ∈ V | |
| 20 | 19 | mptex 7199 | . . 3 ⊢ (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈‘𝐵), (𝐿‘𝐵)))) ∈ V |
| 21 | 17, 18, 20 | fvmpt 6970 | . 2 ⊢ (𝑅 ∈ V → (ℝ*Hom‘𝑅) = (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈‘𝐵), (𝐿‘𝐵))))) |
| 22 | 1, 21 | syl 17 | 1 ⊢ (𝑅 ∈ 𝑉 → (ℝ*Hom‘𝑅) = (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈‘𝐵), (𝐿‘𝐵))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ifcif 4490 ↦ cmpt 5190 “ cima 5643 ‘cfv 6513 ℝcr 11073 +∞cpnf 11211 ℝ*cxr 11213 lubclub 18276 glbcglb 18277 ℝHomcrrh 33989 ℝ*Homcxrh 34012 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-xr 11218 df-xrh 34013 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |