![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrhval | Structured version Visualization version GIF version |
Description: The value of the embedding from the extended real numbers into a complete lattice. (Contributed by Thierry Arnoux, 19-Feb-2018.) |
Ref | Expression |
---|---|
xrhval.b | ⊢ 𝐵 = ((ℝHom‘𝑅) “ ℝ) |
xrhval.l | ⊢ 𝐿 = (glb‘𝑅) |
xrhval.u | ⊢ 𝑈 = (lub‘𝑅) |
Ref | Expression |
---|---|
xrhval | ⊢ (𝑅 ∈ 𝑉 → (ℝ*Hom‘𝑅) = (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈‘𝐵), (𝐿‘𝐵))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3492 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
2 | fveq2 6891 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (ℝHom‘𝑟) = (ℝHom‘𝑅)) | |
3 | 2 | fveq1d 6893 | . . . . 5 ⊢ (𝑟 = 𝑅 → ((ℝHom‘𝑟)‘𝑥) = ((ℝHom‘𝑅)‘𝑥)) |
4 | fveq2 6891 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (lub‘𝑟) = (lub‘𝑅)) | |
5 | xrhval.u | . . . . . . . 8 ⊢ 𝑈 = (lub‘𝑅) | |
6 | 4, 5 | eqtr4di 2789 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (lub‘𝑟) = 𝑈) |
7 | 2 | imaeq1d 6058 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → ((ℝHom‘𝑟) “ ℝ) = ((ℝHom‘𝑅) “ ℝ)) |
8 | xrhval.b | . . . . . . . 8 ⊢ 𝐵 = ((ℝHom‘𝑅) “ ℝ) | |
9 | 7, 8 | eqtr4di 2789 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → ((ℝHom‘𝑟) “ ℝ) = 𝐵) |
10 | 6, 9 | fveq12d 6898 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)) = (𝑈‘𝐵)) |
11 | fveq2 6891 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (glb‘𝑟) = (glb‘𝑅)) | |
12 | xrhval.l | . . . . . . . 8 ⊢ 𝐿 = (glb‘𝑅) | |
13 | 11, 12 | eqtr4di 2789 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (glb‘𝑟) = 𝐿) |
14 | 13, 9 | fveq12d 6898 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ)) = (𝐿‘𝐵)) |
15 | 10, 14 | ifeq12d 4549 | . . . . 5 ⊢ (𝑟 = 𝑅 → if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ))) = if(𝑥 = +∞, (𝑈‘𝐵), (𝐿‘𝐵))) |
16 | 3, 15 | ifeq12d 4549 | . . . 4 ⊢ (𝑟 = 𝑅 → if(𝑥 ∈ ℝ, ((ℝHom‘𝑟)‘𝑥), if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ)))) = if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈‘𝐵), (𝐿‘𝐵)))) |
17 | 16 | mpteq2dv 5250 | . . 3 ⊢ (𝑟 = 𝑅 → (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑟)‘𝑥), if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ))))) = (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈‘𝐵), (𝐿‘𝐵))))) |
18 | df-xrh 33461 | . . 3 ⊢ ℝ*Hom = (𝑟 ∈ V ↦ (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑟)‘𝑥), if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ)))))) | |
19 | xrex 12978 | . . . 4 ⊢ ℝ* ∈ V | |
20 | 19 | mptex 7227 | . . 3 ⊢ (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈‘𝐵), (𝐿‘𝐵)))) ∈ V |
21 | 17, 18, 20 | fvmpt 6998 | . 2 ⊢ (𝑅 ∈ V → (ℝ*Hom‘𝑅) = (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈‘𝐵), (𝐿‘𝐵))))) |
22 | 1, 21 | syl 17 | 1 ⊢ (𝑅 ∈ 𝑉 → (ℝ*Hom‘𝑅) = (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈‘𝐵), (𝐿‘𝐵))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ifcif 4528 ↦ cmpt 5231 “ cima 5679 ‘cfv 6543 ℝcr 11115 +∞cpnf 11252 ℝ*cxr 11254 lubclub 18272 glbcglb 18273 ℝHomcrrh 33437 ℝ*Homcxrh 33460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-xr 11259 df-xrh 33461 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |