Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrhval Structured version   Visualization version   GIF version

Theorem xrhval 33994
Description: The value of the embedding from the extended real numbers into a complete lattice. (Contributed by Thierry Arnoux, 19-Feb-2018.)
Hypotheses
Ref Expression
xrhval.b 𝐵 = ((ℝHom‘𝑅) “ ℝ)
xrhval.l 𝐿 = (glb‘𝑅)
xrhval.u 𝑈 = (lub‘𝑅)
Assertion
Ref Expression
xrhval (𝑅𝑉 → (ℝ*Hom‘𝑅) = (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈𝐵), (𝐿𝐵)))))
Distinct variable group:   𝑥,𝑅
Allowed substitution hints:   𝐵(𝑥)   𝑈(𝑥)   𝐿(𝑥)   𝑉(𝑥)

Proof of Theorem xrhval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 elex 3484 . 2 (𝑅𝑉𝑅 ∈ V)
2 fveq2 6886 . . . . . 6 (𝑟 = 𝑅 → (ℝHom‘𝑟) = (ℝHom‘𝑅))
32fveq1d 6888 . . . . 5 (𝑟 = 𝑅 → ((ℝHom‘𝑟)‘𝑥) = ((ℝHom‘𝑅)‘𝑥))
4 fveq2 6886 . . . . . . . 8 (𝑟 = 𝑅 → (lub‘𝑟) = (lub‘𝑅))
5 xrhval.u . . . . . . . 8 𝑈 = (lub‘𝑅)
64, 5eqtr4di 2787 . . . . . . 7 (𝑟 = 𝑅 → (lub‘𝑟) = 𝑈)
72imaeq1d 6057 . . . . . . . 8 (𝑟 = 𝑅 → ((ℝHom‘𝑟) “ ℝ) = ((ℝHom‘𝑅) “ ℝ))
8 xrhval.b . . . . . . . 8 𝐵 = ((ℝHom‘𝑅) “ ℝ)
97, 8eqtr4di 2787 . . . . . . 7 (𝑟 = 𝑅 → ((ℝHom‘𝑟) “ ℝ) = 𝐵)
106, 9fveq12d 6893 . . . . . 6 (𝑟 = 𝑅 → ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)) = (𝑈𝐵))
11 fveq2 6886 . . . . . . . 8 (𝑟 = 𝑅 → (glb‘𝑟) = (glb‘𝑅))
12 xrhval.l . . . . . . . 8 𝐿 = (glb‘𝑅)
1311, 12eqtr4di 2787 . . . . . . 7 (𝑟 = 𝑅 → (glb‘𝑟) = 𝐿)
1413, 9fveq12d 6893 . . . . . 6 (𝑟 = 𝑅 → ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ)) = (𝐿𝐵))
1510, 14ifeq12d 4527 . . . . 5 (𝑟 = 𝑅 → if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ))) = if(𝑥 = +∞, (𝑈𝐵), (𝐿𝐵)))
163, 15ifeq12d 4527 . . . 4 (𝑟 = 𝑅 → if(𝑥 ∈ ℝ, ((ℝHom‘𝑟)‘𝑥), if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ)))) = if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈𝐵), (𝐿𝐵))))
1716mpteq2dv 5224 . . 3 (𝑟 = 𝑅 → (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑟)‘𝑥), if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ))))) = (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈𝐵), (𝐿𝐵)))))
18 df-xrh 33993 . . 3 *Hom = (𝑟 ∈ V ↦ (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑟)‘𝑥), if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ))))))
19 xrex 13011 . . . 4 * ∈ V
2019mptex 7225 . . 3 (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈𝐵), (𝐿𝐵)))) ∈ V
2117, 18, 20fvmpt 6996 . 2 (𝑅 ∈ V → (ℝ*Hom‘𝑅) = (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈𝐵), (𝐿𝐵)))))
221, 21syl 17 1 (𝑅𝑉 → (ℝ*Hom‘𝑅) = (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈𝐵), (𝐿𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  Vcvv 3463  ifcif 4505  cmpt 5205  cima 5668  cfv 6541  cr 11136  +∞cpnf 11274  *cxr 11276  lubclub 18326  glbcglb 18327  ℝHomcrrh 33969  *Homcxrh 33992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-xr 11281  df-xrh 33993
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator