| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrhval | Structured version Visualization version GIF version | ||
| Description: The value of the embedding from the extended real numbers into a complete lattice. (Contributed by Thierry Arnoux, 19-Feb-2018.) |
| Ref | Expression |
|---|---|
| xrhval.b | ⊢ 𝐵 = ((ℝHom‘𝑅) “ ℝ) |
| xrhval.l | ⊢ 𝐿 = (glb‘𝑅) |
| xrhval.u | ⊢ 𝑈 = (lub‘𝑅) |
| Ref | Expression |
|---|---|
| xrhval | ⊢ (𝑅 ∈ 𝑉 → (ℝ*Hom‘𝑅) = (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈‘𝐵), (𝐿‘𝐵))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3457 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
| 2 | fveq2 6822 | . . . . . 6 ⊢ (𝑟 = 𝑅 → (ℝHom‘𝑟) = (ℝHom‘𝑅)) | |
| 3 | 2 | fveq1d 6824 | . . . . 5 ⊢ (𝑟 = 𝑅 → ((ℝHom‘𝑟)‘𝑥) = ((ℝHom‘𝑅)‘𝑥)) |
| 4 | fveq2 6822 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (lub‘𝑟) = (lub‘𝑅)) | |
| 5 | xrhval.u | . . . . . . . 8 ⊢ 𝑈 = (lub‘𝑅) | |
| 6 | 4, 5 | eqtr4di 2784 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (lub‘𝑟) = 𝑈) |
| 7 | 2 | imaeq1d 6008 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → ((ℝHom‘𝑟) “ ℝ) = ((ℝHom‘𝑅) “ ℝ)) |
| 8 | xrhval.b | . . . . . . . 8 ⊢ 𝐵 = ((ℝHom‘𝑅) “ ℝ) | |
| 9 | 7, 8 | eqtr4di 2784 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → ((ℝHom‘𝑟) “ ℝ) = 𝐵) |
| 10 | 6, 9 | fveq12d 6829 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)) = (𝑈‘𝐵)) |
| 11 | fveq2 6822 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (glb‘𝑟) = (glb‘𝑅)) | |
| 12 | xrhval.l | . . . . . . . 8 ⊢ 𝐿 = (glb‘𝑅) | |
| 13 | 11, 12 | eqtr4di 2784 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (glb‘𝑟) = 𝐿) |
| 14 | 13, 9 | fveq12d 6829 | . . . . . 6 ⊢ (𝑟 = 𝑅 → ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ)) = (𝐿‘𝐵)) |
| 15 | 10, 14 | ifeq12d 4497 | . . . . 5 ⊢ (𝑟 = 𝑅 → if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ))) = if(𝑥 = +∞, (𝑈‘𝐵), (𝐿‘𝐵))) |
| 16 | 3, 15 | ifeq12d 4497 | . . . 4 ⊢ (𝑟 = 𝑅 → if(𝑥 ∈ ℝ, ((ℝHom‘𝑟)‘𝑥), if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ)))) = if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈‘𝐵), (𝐿‘𝐵)))) |
| 17 | 16 | mpteq2dv 5185 | . . 3 ⊢ (𝑟 = 𝑅 → (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑟)‘𝑥), if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ))))) = (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈‘𝐵), (𝐿‘𝐵))))) |
| 18 | df-xrh 34028 | . . 3 ⊢ ℝ*Hom = (𝑟 ∈ V ↦ (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑟)‘𝑥), if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ)))))) | |
| 19 | xrex 12885 | . . . 4 ⊢ ℝ* ∈ V | |
| 20 | 19 | mptex 7157 | . . 3 ⊢ (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈‘𝐵), (𝐿‘𝐵)))) ∈ V |
| 21 | 17, 18, 20 | fvmpt 6929 | . 2 ⊢ (𝑅 ∈ V → (ℝ*Hom‘𝑅) = (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈‘𝐵), (𝐿‘𝐵))))) |
| 22 | 1, 21 | syl 17 | 1 ⊢ (𝑅 ∈ 𝑉 → (ℝ*Hom‘𝑅) = (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈‘𝐵), (𝐿‘𝐵))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ifcif 4475 ↦ cmpt 5172 “ cima 5619 ‘cfv 6481 ℝcr 11005 +∞cpnf 11143 ℝ*cxr 11145 lubclub 18215 glbcglb 18216 ℝHomcrrh 34004 ℝ*Homcxrh 34027 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-xr 11150 df-xrh 34028 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |