Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-za | Structured version Visualization version GIF version |
Description: Define an algebraic integer as a complex number which is the root of a monic integer polynomial. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
Ref | Expression |
---|---|
df-za | ⊢ ℤ = (IntgOver‘ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cza 40983 | . 2 class ℤ | |
2 | cz 12319 | . . 3 class ℤ | |
3 | citgo 40982 | . . 3 class IntgOver | |
4 | 2, 3 | cfv 6433 | . 2 class (IntgOver‘ℤ) |
5 | 1, 4 | wceq 1539 | 1 wff ℤ = (IntgOver‘ℤ) |
Colors of variables: wff setvar class |
This definition is referenced by: (None) |
Copyright terms: Public domain | W3C validator |