| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-za | Structured version Visualization version GIF version | ||
| Description: Define an algebraic integer as a complex number which is the root of a monic integer polynomial. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
| Ref | Expression |
|---|---|
| df-za | ⊢ ℤ = (IntgOver‘ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cza 43148 | . 2 class ℤ | |
| 2 | cz 12609 | . . 3 class ℤ | |
| 3 | citgo 43147 | . . 3 class IntgOver | |
| 4 | 2, 3 | cfv 6559 | . 2 class (IntgOver‘ℤ) |
| 5 | 1, 4 | wceq 1540 | 1 wff ℤ = (IntgOver‘ℤ) |
| Colors of variables: wff setvar class |
| This definition is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |