Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgoval Structured version   Visualization version   GIF version

Theorem itgoval 41903
Description: Value of the integral-over function. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Assertion
Ref Expression
itgoval (𝑆 βŠ† β„‚ β†’ (IntgOverβ€˜π‘†) = {π‘₯ ∈ β„‚ ∣ βˆƒπ‘ ∈ (Polyβ€˜π‘†)((π‘β€˜π‘₯) = 0 ∧ ((coeffβ€˜π‘)β€˜(degβ€˜π‘)) = 1)})
Distinct variable group:   π‘₯,𝑆,𝑝

Proof of Theorem itgoval
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 cnex 11191 . . 3 β„‚ ∈ V
21elpw2 5346 . 2 (𝑆 ∈ 𝒫 β„‚ ↔ 𝑆 βŠ† β„‚)
3 fveq2 6892 . . . . 5 (𝑠 = 𝑆 β†’ (Polyβ€˜π‘ ) = (Polyβ€˜π‘†))
43rexeqdv 3327 . . . 4 (𝑠 = 𝑆 β†’ (βˆƒπ‘ ∈ (Polyβ€˜π‘ )((π‘β€˜π‘₯) = 0 ∧ ((coeffβ€˜π‘)β€˜(degβ€˜π‘)) = 1) ↔ βˆƒπ‘ ∈ (Polyβ€˜π‘†)((π‘β€˜π‘₯) = 0 ∧ ((coeffβ€˜π‘)β€˜(degβ€˜π‘)) = 1)))
54rabbidv 3441 . . 3 (𝑠 = 𝑆 β†’ {π‘₯ ∈ β„‚ ∣ βˆƒπ‘ ∈ (Polyβ€˜π‘ )((π‘β€˜π‘₯) = 0 ∧ ((coeffβ€˜π‘)β€˜(degβ€˜π‘)) = 1)} = {π‘₯ ∈ β„‚ ∣ βˆƒπ‘ ∈ (Polyβ€˜π‘†)((π‘β€˜π‘₯) = 0 ∧ ((coeffβ€˜π‘)β€˜(degβ€˜π‘)) = 1)})
6 df-itgo 41901 . . 3 IntgOver = (𝑠 ∈ 𝒫 β„‚ ↦ {π‘₯ ∈ β„‚ ∣ βˆƒπ‘ ∈ (Polyβ€˜π‘ )((π‘β€˜π‘₯) = 0 ∧ ((coeffβ€˜π‘)β€˜(degβ€˜π‘)) = 1)})
71rabex 5333 . . 3 {π‘₯ ∈ β„‚ ∣ βˆƒπ‘ ∈ (Polyβ€˜π‘†)((π‘β€˜π‘₯) = 0 ∧ ((coeffβ€˜π‘)β€˜(degβ€˜π‘)) = 1)} ∈ V
85, 6, 7fvmpt 6999 . 2 (𝑆 ∈ 𝒫 β„‚ β†’ (IntgOverβ€˜π‘†) = {π‘₯ ∈ β„‚ ∣ βˆƒπ‘ ∈ (Polyβ€˜π‘†)((π‘β€˜π‘₯) = 0 ∧ ((coeffβ€˜π‘)β€˜(degβ€˜π‘)) = 1)})
92, 8sylbir 234 1 (𝑆 βŠ† β„‚ β†’ (IntgOverβ€˜π‘†) = {π‘₯ ∈ β„‚ ∣ βˆƒπ‘ ∈ (Polyβ€˜π‘†)((π‘β€˜π‘₯) = 0 ∧ ((coeffβ€˜π‘)β€˜(degβ€˜π‘)) = 1)})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆƒwrex 3071  {crab 3433   βŠ† wss 3949  π’« cpw 4603  β€˜cfv 6544  β„‚cc 11108  0cc0 11110  1c1 11111  Polycply 25698  coeffccoe 25700  degcdgr 25701  IntgOvercitgo 41899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-cnex 11166
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-itgo 41901
This theorem is referenced by:  aaitgo  41904  itgoss  41905  itgocn  41906
  Copyright terms: Public domain W3C validator