Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgoval Structured version   Visualization version   GIF version

Theorem itgoval 39768
Description: Value of the integral-over function. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Assertion
Ref Expression
itgoval (𝑆 ⊆ ℂ → (IntgOver‘𝑆) = {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑆)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)})
Distinct variable group:   𝑥,𝑆,𝑝

Proof of Theorem itgoval
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 cnex 10620 . . 3 ℂ ∈ V
21elpw2 5250 . 2 (𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ)
3 fveq2 6672 . . . . 5 (𝑠 = 𝑆 → (Poly‘𝑠) = (Poly‘𝑆))
43rexeqdv 3418 . . . 4 (𝑠 = 𝑆 → (∃𝑝 ∈ (Poly‘𝑠)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1) ↔ ∃𝑝 ∈ (Poly‘𝑆)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)))
54rabbidv 3482 . . 3 (𝑠 = 𝑆 → {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑠)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)} = {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑆)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)})
6 df-itgo 39766 . . 3 IntgOver = (𝑠 ∈ 𝒫 ℂ ↦ {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑠)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)})
71rabex 5237 . . 3 {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑆)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)} ∈ V
85, 6, 7fvmpt 6770 . 2 (𝑆 ∈ 𝒫 ℂ → (IntgOver‘𝑆) = {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑆)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)})
92, 8sylbir 237 1 (𝑆 ⊆ ℂ → (IntgOver‘𝑆) = {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑆)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wrex 3141  {crab 3144  wss 3938  𝒫 cpw 4541  cfv 6357  cc 10537  0cc0 10539  1c1 10540  Polycply 24776  coeffccoe 24778  degcdgr 24779  IntgOvercitgo 39764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332  ax-cnex 10595
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-iota 6316  df-fun 6359  df-fv 6365  df-itgo 39766
This theorem is referenced by:  aaitgo  39769  itgoss  39770  itgocn  39771
  Copyright terms: Public domain W3C validator