| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > itgoval | Structured version Visualization version GIF version | ||
| Description: Value of the integral-over function. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| itgoval | ⊢ (𝑆 ⊆ ℂ → (IntgOver‘𝑆) = {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑆)((𝑝‘𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 11096 | . . 3 ⊢ ℂ ∈ V | |
| 2 | 1 | elpw2 5276 | . 2 ⊢ (𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ) |
| 3 | fveq2 6830 | . . . . 5 ⊢ (𝑠 = 𝑆 → (Poly‘𝑠) = (Poly‘𝑆)) | |
| 4 | 3 | rexeqdv 3294 | . . . 4 ⊢ (𝑠 = 𝑆 → (∃𝑝 ∈ (Poly‘𝑠)((𝑝‘𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1) ↔ ∃𝑝 ∈ (Poly‘𝑆)((𝑝‘𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1))) |
| 5 | 4 | rabbidv 3403 | . . 3 ⊢ (𝑠 = 𝑆 → {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑠)((𝑝‘𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)} = {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑆)((𝑝‘𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)}) |
| 6 | df-itgo 43279 | . . 3 ⊢ IntgOver = (𝑠 ∈ 𝒫 ℂ ↦ {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑠)((𝑝‘𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)}) | |
| 7 | 1 | rabex 5281 | . . 3 ⊢ {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑆)((𝑝‘𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)} ∈ V |
| 8 | 5, 6, 7 | fvmpt 6937 | . 2 ⊢ (𝑆 ∈ 𝒫 ℂ → (IntgOver‘𝑆) = {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑆)((𝑝‘𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)}) |
| 9 | 2, 8 | sylbir 235 | 1 ⊢ (𝑆 ⊆ ℂ → (IntgOver‘𝑆) = {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑆)((𝑝‘𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 {crab 3396 ⊆ wss 3898 𝒫 cpw 4551 ‘cfv 6488 ℂcc 11013 0cc0 11015 1c1 11016 Polycply 26119 coeffccoe 26121 degcdgr 26122 IntgOvercitgo 43277 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-cnex 11071 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6444 df-fun 6490 df-fv 6496 df-itgo 43279 |
| This theorem is referenced by: aaitgo 43282 itgoss 43283 itgocn 43284 |
| Copyright terms: Public domain | W3C validator |