Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgoval Structured version   Visualization version   GIF version

Theorem itgoval 43150
Description: Value of the integral-over function. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Assertion
Ref Expression
itgoval (𝑆 ⊆ ℂ → (IntgOver‘𝑆) = {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑆)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)})
Distinct variable group:   𝑥,𝑆,𝑝

Proof of Theorem itgoval
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 cnex 11149 . . 3 ℂ ∈ V
21elpw2 5289 . 2 (𝑆 ∈ 𝒫 ℂ ↔ 𝑆 ⊆ ℂ)
3 fveq2 6858 . . . . 5 (𝑠 = 𝑆 → (Poly‘𝑠) = (Poly‘𝑆))
43rexeqdv 3300 . . . 4 (𝑠 = 𝑆 → (∃𝑝 ∈ (Poly‘𝑠)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1) ↔ ∃𝑝 ∈ (Poly‘𝑆)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)))
54rabbidv 3413 . . 3 (𝑠 = 𝑆 → {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑠)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)} = {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑆)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)})
6 df-itgo 43148 . . 3 IntgOver = (𝑠 ∈ 𝒫 ℂ ↦ {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑠)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)})
71rabex 5294 . . 3 {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑆)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)} ∈ V
85, 6, 7fvmpt 6968 . 2 (𝑆 ∈ 𝒫 ℂ → (IntgOver‘𝑆) = {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑆)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)})
92, 8sylbir 235 1 (𝑆 ⊆ ℂ → (IntgOver‘𝑆) = {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑆)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  {crab 3405  wss 3914  𝒫 cpw 4563  cfv 6511  cc 11066  0cc0 11068  1c1 11069  Polycply 26089  coeffccoe 26091  degcdgr 26092  IntgOvercitgo 43146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-cnex 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-itgo 43148
This theorem is referenced by:  aaitgo  43151  itgoss  43152  itgocn  43153
  Copyright terms: Public domain W3C validator