Detailed syntax breakdown of Definition df-itgo
Step | Hyp | Ref
| Expression |
1 | | citgo 40898 |
. 2
class
IntgOver |
2 | | vs |
. . 3
setvar 𝑠 |
3 | | cc 10800 |
. . . 4
class
ℂ |
4 | 3 | cpw 4530 |
. . 3
class 𝒫
ℂ |
5 | | vx |
. . . . . . . . 9
setvar 𝑥 |
6 | 5 | cv 1538 |
. . . . . . . 8
class 𝑥 |
7 | | vp |
. . . . . . . . 9
setvar 𝑝 |
8 | 7 | cv 1538 |
. . . . . . . 8
class 𝑝 |
9 | 6, 8 | cfv 6418 |
. . . . . . 7
class (𝑝‘𝑥) |
10 | | cc0 10802 |
. . . . . . 7
class
0 |
11 | 9, 10 | wceq 1539 |
. . . . . 6
wff (𝑝‘𝑥) = 0 |
12 | | cdgr 25253 |
. . . . . . . . 9
class
deg |
13 | 8, 12 | cfv 6418 |
. . . . . . . 8
class
(deg‘𝑝) |
14 | | ccoe 25252 |
. . . . . . . . 9
class
coeff |
15 | 8, 14 | cfv 6418 |
. . . . . . . 8
class
(coeff‘𝑝) |
16 | 13, 15 | cfv 6418 |
. . . . . . 7
class
((coeff‘𝑝)‘(deg‘𝑝)) |
17 | | c1 10803 |
. . . . . . 7
class
1 |
18 | 16, 17 | wceq 1539 |
. . . . . 6
wff
((coeff‘𝑝)‘(deg‘𝑝)) = 1 |
19 | 11, 18 | wa 395 |
. . . . 5
wff ((𝑝‘𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1) |
20 | 2 | cv 1538 |
. . . . . 6
class 𝑠 |
21 | | cply 25250 |
. . . . . 6
class
Poly |
22 | 20, 21 | cfv 6418 |
. . . . 5
class
(Poly‘𝑠) |
23 | 19, 7, 22 | wrex 3064 |
. . . 4
wff
∃𝑝 ∈
(Poly‘𝑠)((𝑝‘𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1) |
24 | 23, 5, 3 | crab 3067 |
. . 3
class {𝑥 ∈ ℂ ∣
∃𝑝 ∈
(Poly‘𝑠)((𝑝‘𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)} |
25 | 2, 4, 24 | cmpt 5153 |
. 2
class (𝑠 ∈ 𝒫 ℂ
↦ {𝑥 ∈ ℂ
∣ ∃𝑝 ∈
(Poly‘𝑠)((𝑝‘𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)}) |
26 | 1, 25 | wceq 1539 |
1
wff IntgOver =
(𝑠 ∈ 𝒫 ℂ
↦ {𝑥 ∈ ℂ
∣ ∃𝑝 ∈
(Poly‘𝑠)((𝑝‘𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)}) |