Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-itgo Structured version   Visualization version   GIF version

Definition df-itgo 43141
Description: A complex number is said to be integral over a subset if it is the root of a monic polynomial with coefficients from the subset. This definition is typically not used for fields but it works there, see aaitgo 43144. This definition could work for subsets of an arbitrary ring with a more general definition of polynomials. TODO: use Monic. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Assertion
Ref Expression
df-itgo IntgOver = (𝑠 ∈ 𝒫 ℂ ↦ {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑠)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)})
Distinct variable group:   𝑥,𝑝,𝑠

Detailed syntax breakdown of Definition df-itgo
StepHypRef Expression
1 citgo 43139 . 2 class IntgOver
2 vs . . 3 setvar 𝑠
3 cc 11072 . . . 4 class
43cpw 4565 . . 3 class 𝒫 ℂ
5 vx . . . . . . . . 9 setvar 𝑥
65cv 1539 . . . . . . . 8 class 𝑥
7 vp . . . . . . . . 9 setvar 𝑝
87cv 1539 . . . . . . . 8 class 𝑝
96, 8cfv 6513 . . . . . . 7 class (𝑝𝑥)
10 cc0 11074 . . . . . . 7 class 0
119, 10wceq 1540 . . . . . 6 wff (𝑝𝑥) = 0
12 cdgr 26098 . . . . . . . . 9 class deg
138, 12cfv 6513 . . . . . . . 8 class (deg‘𝑝)
14 ccoe 26097 . . . . . . . . 9 class coeff
158, 14cfv 6513 . . . . . . . 8 class (coeff‘𝑝)
1613, 15cfv 6513 . . . . . . 7 class ((coeff‘𝑝)‘(deg‘𝑝))
17 c1 11075 . . . . . . 7 class 1
1816, 17wceq 1540 . . . . . 6 wff ((coeff‘𝑝)‘(deg‘𝑝)) = 1
1911, 18wa 395 . . . . 5 wff ((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)
202cv 1539 . . . . . 6 class 𝑠
21 cply 26095 . . . . . 6 class Poly
2220, 21cfv 6513 . . . . 5 class (Poly‘𝑠)
2319, 7, 22wrex 3054 . . . 4 wff 𝑝 ∈ (Poly‘𝑠)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)
2423, 5, 3crab 3408 . . 3 class {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑠)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)}
252, 4, 24cmpt 5190 . 2 class (𝑠 ∈ 𝒫 ℂ ↦ {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑠)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)})
261, 25wceq 1540 1 wff IntgOver = (𝑠 ∈ 𝒫 ℂ ↦ {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑠)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)})
Colors of variables: wff setvar class
This definition is referenced by:  itgoval  43143  itgocn  43146
  Copyright terms: Public domain W3C validator