Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-itgo Structured version   Visualization version   GIF version

Definition df-itgo 43276
Description: A complex number is said to be integral over a subset if it is the root of a monic polynomial with coefficients from the subset. This definition is typically not used for fields but it works there, see aaitgo 43279. This definition could work for subsets of an arbitrary ring with a more general definition of polynomials. TODO: use Monic. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Assertion
Ref Expression
df-itgo IntgOver = (𝑠 ∈ 𝒫 ℂ ↦ {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑠)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)})
Distinct variable group:   𝑥,𝑝,𝑠

Detailed syntax breakdown of Definition df-itgo
StepHypRef Expression
1 citgo 43274 . 2 class IntgOver
2 vs . . 3 setvar 𝑠
3 cc 11011 . . . 4 class
43cpw 4549 . . 3 class 𝒫 ℂ
5 vx . . . . . . . . 9 setvar 𝑥
65cv 1540 . . . . . . . 8 class 𝑥
7 vp . . . . . . . . 9 setvar 𝑝
87cv 1540 . . . . . . . 8 class 𝑝
96, 8cfv 6486 . . . . . . 7 class (𝑝𝑥)
10 cc0 11013 . . . . . . 7 class 0
119, 10wceq 1541 . . . . . 6 wff (𝑝𝑥) = 0
12 cdgr 26120 . . . . . . . . 9 class deg
138, 12cfv 6486 . . . . . . . 8 class (deg‘𝑝)
14 ccoe 26119 . . . . . . . . 9 class coeff
158, 14cfv 6486 . . . . . . . 8 class (coeff‘𝑝)
1613, 15cfv 6486 . . . . . . 7 class ((coeff‘𝑝)‘(deg‘𝑝))
17 c1 11014 . . . . . . 7 class 1
1816, 17wceq 1541 . . . . . 6 wff ((coeff‘𝑝)‘(deg‘𝑝)) = 1
1911, 18wa 395 . . . . 5 wff ((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)
202cv 1540 . . . . . 6 class 𝑠
21 cply 26117 . . . . . 6 class Poly
2220, 21cfv 6486 . . . . 5 class (Poly‘𝑠)
2319, 7, 22wrex 3057 . . . 4 wff 𝑝 ∈ (Poly‘𝑠)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)
2423, 5, 3crab 3396 . . 3 class {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑠)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)}
252, 4, 24cmpt 5174 . 2 class (𝑠 ∈ 𝒫 ℂ ↦ {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑠)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)})
261, 25wceq 1541 1 wff IntgOver = (𝑠 ∈ 𝒫 ℂ ↦ {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑠)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)})
Colors of variables: wff setvar class
This definition is referenced by:  itgoval  43278  itgocn  43281
  Copyright terms: Public domain W3C validator