Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-itgo Structured version   Visualization version   GIF version

Definition df-itgo 43102
Description: A complex number is said to be integral over a subset if it is the root of a monic polynomial with coefficients from the subset. This definition is typically not used for fields but it works there, see aaitgo 43105. This definition could work for subsets of an arbitrary ring with a more general definition of polynomials. TODO: use Monic. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Assertion
Ref Expression
df-itgo IntgOver = (𝑠 ∈ 𝒫 ℂ ↦ {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑠)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)})
Distinct variable group:   𝑥,𝑝,𝑠

Detailed syntax breakdown of Definition df-itgo
StepHypRef Expression
1 citgo 43100 . 2 class IntgOver
2 vs . . 3 setvar 𝑠
3 cc 11144 . . . 4 class
43cpw 4604 . . 3 class 𝒫 ℂ
5 vx . . . . . . . . 9 setvar 𝑥
65cv 1534 . . . . . . . 8 class 𝑥
7 vp . . . . . . . . 9 setvar 𝑝
87cv 1534 . . . . . . . 8 class 𝑝
96, 8cfv 6558 . . . . . . 7 class (𝑝𝑥)
10 cc0 11146 . . . . . . 7 class 0
119, 10wceq 1535 . . . . . 6 wff (𝑝𝑥) = 0
12 cdgr 26222 . . . . . . . . 9 class deg
138, 12cfv 6558 . . . . . . . 8 class (deg‘𝑝)
14 ccoe 26221 . . . . . . . . 9 class coeff
158, 14cfv 6558 . . . . . . . 8 class (coeff‘𝑝)
1613, 15cfv 6558 . . . . . . 7 class ((coeff‘𝑝)‘(deg‘𝑝))
17 c1 11147 . . . . . . 7 class 1
1816, 17wceq 1535 . . . . . 6 wff ((coeff‘𝑝)‘(deg‘𝑝)) = 1
1911, 18wa 395 . . . . 5 wff ((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)
202cv 1534 . . . . . 6 class 𝑠
21 cply 26219 . . . . . 6 class Poly
2220, 21cfv 6558 . . . . 5 class (Poly‘𝑠)
2319, 7, 22wrex 3066 . . . 4 wff 𝑝 ∈ (Poly‘𝑠)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)
2423, 5, 3crab 3432 . . 3 class {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑠)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)}
252, 4, 24cmpt 5232 . 2 class (𝑠 ∈ 𝒫 ℂ ↦ {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑠)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)})
261, 25wceq 1535 1 wff IntgOver = (𝑠 ∈ 𝒫 ℂ ↦ {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑠)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)})
Colors of variables: wff setvar class
This definition is referenced by:  itgoval  43104  itgocn  43107
  Copyright terms: Public domain W3C validator