Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-itgo Structured version   Visualization version   GIF version

Definition df-itgo 41255
Description: A complex number is said to be integral over a subset if it is the root of a monic polynomial with coefficients from the subset. This definition is typically not used for fields but it works there, see aaitgo 41258. This definition could work for subsets of an arbitrary ring with a more general definition of polynomials. TODO: use Monic. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Assertion
Ref Expression
df-itgo IntgOver = (𝑠 ∈ 𝒫 ℂ ↦ {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑠)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)})
Distinct variable group:   𝑥,𝑝,𝑠

Detailed syntax breakdown of Definition df-itgo
StepHypRef Expression
1 citgo 41253 . 2 class IntgOver
2 vs . . 3 setvar 𝑠
3 cc 10970 . . . 4 class
43cpw 4547 . . 3 class 𝒫 ℂ
5 vx . . . . . . . . 9 setvar 𝑥
65cv 1539 . . . . . . . 8 class 𝑥
7 vp . . . . . . . . 9 setvar 𝑝
87cv 1539 . . . . . . . 8 class 𝑝
96, 8cfv 6479 . . . . . . 7 class (𝑝𝑥)
10 cc0 10972 . . . . . . 7 class 0
119, 10wceq 1540 . . . . . 6 wff (𝑝𝑥) = 0
12 cdgr 25454 . . . . . . . . 9 class deg
138, 12cfv 6479 . . . . . . . 8 class (deg‘𝑝)
14 ccoe 25453 . . . . . . . . 9 class coeff
158, 14cfv 6479 . . . . . . . 8 class (coeff‘𝑝)
1613, 15cfv 6479 . . . . . . 7 class ((coeff‘𝑝)‘(deg‘𝑝))
17 c1 10973 . . . . . . 7 class 1
1816, 17wceq 1540 . . . . . 6 wff ((coeff‘𝑝)‘(deg‘𝑝)) = 1
1911, 18wa 396 . . . . 5 wff ((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)
202cv 1539 . . . . . 6 class 𝑠
21 cply 25451 . . . . . 6 class Poly
2220, 21cfv 6479 . . . . 5 class (Poly‘𝑠)
2319, 7, 22wrex 3070 . . . 4 wff 𝑝 ∈ (Poly‘𝑠)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)
2423, 5, 3crab 3403 . . 3 class {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑠)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)}
252, 4, 24cmpt 5175 . 2 class (𝑠 ∈ 𝒫 ℂ ↦ {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑠)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)})
261, 25wceq 1540 1 wff IntgOver = (𝑠 ∈ 𝒫 ℂ ↦ {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑠)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)})
Colors of variables: wff setvar class
This definition is referenced by:  itgoval  41257  itgocn  41260
  Copyright terms: Public domain W3C validator