Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-itgo Structured version   Visualization version   GIF version

Definition df-itgo 41983
Description: A complex number is said to be integral over a subset if it is the root of a monic polynomial with coefficients from the subset. This definition is typically not used for fields but it works there, see aaitgo 41986. This definition could work for subsets of an arbitrary ring with a more general definition of polynomials. TODO: use Monic. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Assertion
Ref Expression
df-itgo IntgOver = (𝑠 ∈ 𝒫 β„‚ ↦ {π‘₯ ∈ β„‚ ∣ βˆƒπ‘ ∈ (Polyβ€˜π‘ )((π‘β€˜π‘₯) = 0 ∧ ((coeffβ€˜π‘)β€˜(degβ€˜π‘)) = 1)})
Distinct variable group:   π‘₯,𝑝,𝑠

Detailed syntax breakdown of Definition df-itgo
StepHypRef Expression
1 citgo 41981 . 2 class IntgOver
2 vs . . 3 setvar 𝑠
3 cc 11110 . . . 4 class β„‚
43cpw 4602 . . 3 class 𝒫 β„‚
5 vx . . . . . . . . 9 setvar π‘₯
65cv 1540 . . . . . . . 8 class π‘₯
7 vp . . . . . . . . 9 setvar 𝑝
87cv 1540 . . . . . . . 8 class 𝑝
96, 8cfv 6543 . . . . . . 7 class (π‘β€˜π‘₯)
10 cc0 11112 . . . . . . 7 class 0
119, 10wceq 1541 . . . . . 6 wff (π‘β€˜π‘₯) = 0
12 cdgr 25708 . . . . . . . . 9 class deg
138, 12cfv 6543 . . . . . . . 8 class (degβ€˜π‘)
14 ccoe 25707 . . . . . . . . 9 class coeff
158, 14cfv 6543 . . . . . . . 8 class (coeffβ€˜π‘)
1613, 15cfv 6543 . . . . . . 7 class ((coeffβ€˜π‘)β€˜(degβ€˜π‘))
17 c1 11113 . . . . . . 7 class 1
1816, 17wceq 1541 . . . . . 6 wff ((coeffβ€˜π‘)β€˜(degβ€˜π‘)) = 1
1911, 18wa 396 . . . . 5 wff ((π‘β€˜π‘₯) = 0 ∧ ((coeffβ€˜π‘)β€˜(degβ€˜π‘)) = 1)
202cv 1540 . . . . . 6 class 𝑠
21 cply 25705 . . . . . 6 class Poly
2220, 21cfv 6543 . . . . 5 class (Polyβ€˜π‘ )
2319, 7, 22wrex 3070 . . . 4 wff βˆƒπ‘ ∈ (Polyβ€˜π‘ )((π‘β€˜π‘₯) = 0 ∧ ((coeffβ€˜π‘)β€˜(degβ€˜π‘)) = 1)
2423, 5, 3crab 3432 . . 3 class {π‘₯ ∈ β„‚ ∣ βˆƒπ‘ ∈ (Polyβ€˜π‘ )((π‘β€˜π‘₯) = 0 ∧ ((coeffβ€˜π‘)β€˜(degβ€˜π‘)) = 1)}
252, 4, 24cmpt 5231 . 2 class (𝑠 ∈ 𝒫 β„‚ ↦ {π‘₯ ∈ β„‚ ∣ βˆƒπ‘ ∈ (Polyβ€˜π‘ )((π‘β€˜π‘₯) = 0 ∧ ((coeffβ€˜π‘)β€˜(degβ€˜π‘)) = 1)})
261, 25wceq 1541 1 wff IntgOver = (𝑠 ∈ 𝒫 β„‚ ↦ {π‘₯ ∈ β„‚ ∣ βˆƒπ‘ ∈ (Polyβ€˜π‘ )((π‘β€˜π‘₯) = 0 ∧ ((coeffβ€˜π‘)β€˜(degβ€˜π‘)) = 1)})
Colors of variables: wff setvar class
This definition is referenced by:  itgoval  41985  itgocn  41988
  Copyright terms: Public domain W3C validator