Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-itgo Structured version   Visualization version   GIF version

Definition df-itgo 43108
Description: A complex number is said to be integral over a subset if it is the root of a monic polynomial with coefficients from the subset. This definition is typically not used for fields but it works there, see aaitgo 43111. This definition could work for subsets of an arbitrary ring with a more general definition of polynomials. TODO: use Monic. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Assertion
Ref Expression
df-itgo IntgOver = (𝑠 ∈ 𝒫 ℂ ↦ {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑠)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)})
Distinct variable group:   𝑥,𝑝,𝑠

Detailed syntax breakdown of Definition df-itgo
StepHypRef Expression
1 citgo 43106 . 2 class IntgOver
2 vs . . 3 setvar 𝑠
3 cc 11119 . . . 4 class
43cpw 4573 . . 3 class 𝒫 ℂ
5 vx . . . . . . . . 9 setvar 𝑥
65cv 1538 . . . . . . . 8 class 𝑥
7 vp . . . . . . . . 9 setvar 𝑝
87cv 1538 . . . . . . . 8 class 𝑝
96, 8cfv 6527 . . . . . . 7 class (𝑝𝑥)
10 cc0 11121 . . . . . . 7 class 0
119, 10wceq 1539 . . . . . 6 wff (𝑝𝑥) = 0
12 cdgr 26129 . . . . . . . . 9 class deg
138, 12cfv 6527 . . . . . . . 8 class (deg‘𝑝)
14 ccoe 26128 . . . . . . . . 9 class coeff
158, 14cfv 6527 . . . . . . . 8 class (coeff‘𝑝)
1613, 15cfv 6527 . . . . . . 7 class ((coeff‘𝑝)‘(deg‘𝑝))
17 c1 11122 . . . . . . 7 class 1
1816, 17wceq 1539 . . . . . 6 wff ((coeff‘𝑝)‘(deg‘𝑝)) = 1
1911, 18wa 395 . . . . 5 wff ((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)
202cv 1538 . . . . . 6 class 𝑠
21 cply 26126 . . . . . 6 class Poly
2220, 21cfv 6527 . . . . 5 class (Poly‘𝑠)
2319, 7, 22wrex 3059 . . . 4 wff 𝑝 ∈ (Poly‘𝑠)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)
2423, 5, 3crab 3413 . . 3 class {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑠)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)}
252, 4, 24cmpt 5198 . 2 class (𝑠 ∈ 𝒫 ℂ ↦ {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑠)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)})
261, 25wceq 1539 1 wff IntgOver = (𝑠 ∈ 𝒫 ℂ ↦ {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑠)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)})
Colors of variables: wff setvar class
This definition is referenced by:  itgoval  43110  itgocn  43113
  Copyright terms: Public domain W3C validator