Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-itgo Structured version   Visualization version   GIF version

Definition df-itgo 41901
Description: A complex number is said to be integral over a subset if it is the root of a monic polynomial with coefficients from the subset. This definition is typically not used for fields but it works there, see aaitgo 41904. This definition could work for subsets of an arbitrary ring with a more general definition of polynomials. TODO: use Monic. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Assertion
Ref Expression
df-itgo IntgOver = (𝑠 ∈ 𝒫 β„‚ ↦ {π‘₯ ∈ β„‚ ∣ βˆƒπ‘ ∈ (Polyβ€˜π‘ )((π‘β€˜π‘₯) = 0 ∧ ((coeffβ€˜π‘)β€˜(degβ€˜π‘)) = 1)})
Distinct variable group:   π‘₯,𝑝,𝑠

Detailed syntax breakdown of Definition df-itgo
StepHypRef Expression
1 citgo 41899 . 2 class IntgOver
2 vs . . 3 setvar 𝑠
3 cc 11108 . . . 4 class β„‚
43cpw 4603 . . 3 class 𝒫 β„‚
5 vx . . . . . . . . 9 setvar π‘₯
65cv 1541 . . . . . . . 8 class π‘₯
7 vp . . . . . . . . 9 setvar 𝑝
87cv 1541 . . . . . . . 8 class 𝑝
96, 8cfv 6544 . . . . . . 7 class (π‘β€˜π‘₯)
10 cc0 11110 . . . . . . 7 class 0
119, 10wceq 1542 . . . . . 6 wff (π‘β€˜π‘₯) = 0
12 cdgr 25701 . . . . . . . . 9 class deg
138, 12cfv 6544 . . . . . . . 8 class (degβ€˜π‘)
14 ccoe 25700 . . . . . . . . 9 class coeff
158, 14cfv 6544 . . . . . . . 8 class (coeffβ€˜π‘)
1613, 15cfv 6544 . . . . . . 7 class ((coeffβ€˜π‘)β€˜(degβ€˜π‘))
17 c1 11111 . . . . . . 7 class 1
1816, 17wceq 1542 . . . . . 6 wff ((coeffβ€˜π‘)β€˜(degβ€˜π‘)) = 1
1911, 18wa 397 . . . . 5 wff ((π‘β€˜π‘₯) = 0 ∧ ((coeffβ€˜π‘)β€˜(degβ€˜π‘)) = 1)
202cv 1541 . . . . . 6 class 𝑠
21 cply 25698 . . . . . 6 class Poly
2220, 21cfv 6544 . . . . 5 class (Polyβ€˜π‘ )
2319, 7, 22wrex 3071 . . . 4 wff βˆƒπ‘ ∈ (Polyβ€˜π‘ )((π‘β€˜π‘₯) = 0 ∧ ((coeffβ€˜π‘)β€˜(degβ€˜π‘)) = 1)
2423, 5, 3crab 3433 . . 3 class {π‘₯ ∈ β„‚ ∣ βˆƒπ‘ ∈ (Polyβ€˜π‘ )((π‘β€˜π‘₯) = 0 ∧ ((coeffβ€˜π‘)β€˜(degβ€˜π‘)) = 1)}
252, 4, 24cmpt 5232 . 2 class (𝑠 ∈ 𝒫 β„‚ ↦ {π‘₯ ∈ β„‚ ∣ βˆƒπ‘ ∈ (Polyβ€˜π‘ )((π‘β€˜π‘₯) = 0 ∧ ((coeffβ€˜π‘)β€˜(degβ€˜π‘)) = 1)})
261, 25wceq 1542 1 wff IntgOver = (𝑠 ∈ 𝒫 β„‚ ↦ {π‘₯ ∈ β„‚ ∣ βˆƒπ‘ ∈ (Polyβ€˜π‘ )((π‘β€˜π‘₯) = 0 ∧ ((coeffβ€˜π‘)β€˜(degβ€˜π‘)) = 1)})
Colors of variables: wff setvar class
This definition is referenced by:  itgoval  41903  itgocn  41906
  Copyright terms: Public domain W3C validator