HomeHome Metamath Proof Explorer
Theorem List (p. 419 of 474)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29923)
  Hilbert Space Explorer  Hilbert Space Explorer
(29924-31446)
  Users' Mathboxes  Users' Mathboxes
(31447-47372)
 

Theorem List for Metamath Proof Explorer - 41801-41900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremomltoe 41801 Exponentiation eventually dominates multiplication. (Contributed by RP, 3-Jan-2025.)
((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((1o𝐴𝐴𝐵) → (𝐵 ·o 𝐴) ∈ (𝐵o 𝐴)))
 
21.32.3  Surreal Contributions
 
Theoremabeqabi 41802 Generalized condition for a class abstraction to be equal to some class. (Contributed by RP, 2-Sep-2024.)
𝐴 = {𝑥𝜓}       ({𝑥𝜑} = 𝐴 ↔ ∀𝑥(𝜑𝜓))
 
Theoremabpr 41803* Condition for a class abstraction to be a pair. (Contributed by RP, 25-Aug-2024.)
({𝑥𝜑} = {𝑌, 𝑍} ↔ ∀𝑥(𝜑 ↔ (𝑥 = 𝑌𝑥 = 𝑍)))
 
Theoremabtp 41804* Condition for a class abstraction to be a triple. (Contributed by RP, 25-Aug-2024.)
({𝑥𝜑} = {𝑋, 𝑌, 𝑍} ↔ ∀𝑥(𝜑 ↔ (𝑥 = 𝑋𝑥 = 𝑌𝑥 = 𝑍)))
 
Theoremralopabb 41805* Restricted universal quantification over an ordered-pair class abstraction. (Contributed by RP, 25-Sep-2024.)
𝑂 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}    &   (𝑜 = ⟨𝑥, 𝑦⟩ → (𝜓𝜒))       (∀𝑜𝑂 𝜓 ↔ ∀𝑥𝑦(𝜑𝜒))
 
Theoremfpwfvss 41806 Functions into a powerset always have values which are subsets. This is dependant on our convention when the argument is not part of the domain. (Contributed by RP, 13-Sep-2024.)
𝐹:𝐶⟶𝒫 𝐵       (𝐹𝐴) ⊆ 𝐵
 
Theoremsdomne0 41807 A class that strictly dominates any set is not empty. (Suggested by SN, 14-Jan-2025.) (Contributed by RP, 14-Jan-2025.)
(𝐵𝐴𝐴 ≠ ∅)
 
Theoremsdomne0d 41808 A class that strictly dominates any set is not empty. (Contributed by RP, 3-Sep-2024.)
(𝜑𝐵𝐴)    &   (𝜑𝐵𝑉)       (𝜑𝐴 ≠ ∅)
 
Theoremsafesnsupfiss 41809 If 𝐵 is a finite subset of ordered class 𝐴, we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 1-Sep-2024.)
(𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o))    &   (𝜑𝐵 ∈ Fin)    &   (𝜑𝐵𝐴)    &   (𝜑𝑅 Or 𝐴)       (𝜑 → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) ⊆ 𝐵)
 
Theoremsafesnsupfiub 41810* If 𝐵 is a finite subset of ordered class 𝐴, we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 1-Sep-2024.)
(𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o))    &   (𝜑𝐵 ∈ Fin)    &   (𝜑𝐵𝐴)    &   (𝜑𝑅 Or 𝐴)    &   (𝜑 → ∀𝑥𝐵𝑦𝐶 𝑥𝑅𝑦)       (𝜑 → ∀𝑥 ∈ if (𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)∀𝑦𝐶 𝑥𝑅𝑦)
 
Theoremsafesnsupfidom1o 41811 If 𝐵 is a finite subset of ordered class 𝐴, we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 1-Sep-2024.)
(𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o))    &   (𝜑𝐵 ∈ Fin)       (𝜑 → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) ≼ 1o)
 
Theoremsafesnsupfilb 41812* If 𝐵 is a finite subset of ordered class 𝐴, we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 3-Sep-2024.)
(𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o))    &   (𝜑𝐵 ∈ Fin)    &   (𝜑𝐵𝐴)    &   (𝜑𝑅 Or 𝐴)       (𝜑 → ∀𝑥 ∈ (𝐵 ∖ if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵))∀𝑦 ∈ if (𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)𝑥𝑅𝑦)
 
Theoremisoeq145d 41813 Equality deduction for isometries. (Contributed by RP, 14-Jan-2025.)
(𝜑𝐹 = 𝐺)    &   (𝜑𝐴 = 𝐶)    &   (𝜑𝐵 = 𝐷)       (𝜑 → (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐷)))
 
Theoremresisoeq45d 41814 Equality deduction for equally restricted isometries. (Contributed by RP, 14-Jan-2025.)
(𝜑𝐴 = 𝐶)    &   (𝜑𝐵 = 𝐷)       (𝜑 → ((𝐹𝐴) Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐹𝐶) Isom 𝑅, 𝑆 (𝐶, 𝐷)))
 
Theoremnegslem1 41815 An equivalence between identically restricted order-reversing self-isometries. (Contributed by RP, 30-Sep-2024.)
(𝐴 = 𝐵 → ((𝐹𝐴) Isom 𝑅, 𝑅(𝐴, 𝐴) ↔ (𝐹𝐵) Isom 𝑅, 𝑅(𝐵, 𝐵)))
 
Theoremnvocnvb 41816* Equivalence to saying the converse of an involution is the function itself. (Contributed by RP, 13-Oct-2024.)
((𝐹 Fn 𝐴𝐹 = 𝐹) ↔ (𝐹:𝐴1-1-onto𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥))
 
Theoremrp-brsslt 41817* Binary relation form of a relation, <, which has been extended from relation 𝑅 to subsets of class 𝑆. Usually, we will assume 𝑅 Or 𝑆. Definition in [Alling], p. 2. Generalization of brsslt 27168. (Originally by Scott Fenton, 8-Dec-2021.) (Contributed by RP, 28-Nov-2023.)
< = {⟨𝑎, 𝑏⟩ ∣ (𝑎𝑆𝑏𝑆 ∧ ∀𝑥𝑎𝑦𝑏 𝑥𝑅𝑦)}       (𝐴 < 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴𝑆𝐵𝑆 ∧ ∀𝑥𝐴𝑦𝐵 𝑥𝑅𝑦)))
 
Theoremnla0002 41818* Extending a linear order to subsets, the empty set is less than any subset. Note in [Alling], p. 3. (Contributed by RP, 28-Nov-2023.)
< = {⟨𝑎, 𝑏⟩ ∣ (𝑎𝑆𝑏𝑆 ∧ ∀𝑥𝑎𝑦𝑏 𝑥𝑅𝑦)}    &   (𝜑𝐴 ∈ V)    &   (𝜑𝐴𝑆)       (𝜑 → ∅ < 𝐴)
 
Theoremnla0003 41819* Extending a linear order to subsets, the empty set is greater than any subset. Note in [Alling], p. 3. (Contributed by RP, 28-Nov-2023.)
< = {⟨𝑎, 𝑏⟩ ∣ (𝑎𝑆𝑏𝑆 ∧ ∀𝑥𝑎𝑦𝑏 𝑥𝑅𝑦)}    &   (𝜑𝐴 ∈ V)    &   (𝜑𝐴𝑆)       (𝜑𝐴 < ∅)
 
Theoremnla0001 41820* Extending a linear order to subsets, the empty set is less than itself. Note in [Alling], p. 3. (Contributed by RP, 28-Nov-2023.)
< = {⟨𝑎, 𝑏⟩ ∣ (𝑎𝑆𝑏𝑆 ∧ ∀𝑥𝑎𝑦𝑏 𝑥𝑅𝑦)}       (𝜑 → ∅ < ∅)
 
Theoremfaosnf0.11b 41821* 𝐵 is called a non-limit ordinal if it is not a limit ordinal. (Contributed by RP, 27-Sep-2023.)

Alling, Norman L. "Fundamentals of Analysis Over Surreal Numbers Fields." The Rocky Mountain Journal of Mathematics 19, no. 3 (1989): 565-73. http://www.jstor.org/stable/44237243.

((Ord 𝐴 ∧ ¬ Lim 𝐴𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥)
 
Theoremdfno2 41822 A surreal number, in the functional sign expansion representation, is a function which maps from an ordinal into a set of two possible signs. (Contributed by RP, 12-Jan-2025.)
No = {𝑓 ∈ 𝒫 (On × {1o, 2o}) ∣ (Fun 𝑓 ∧ dom 𝑓 ∈ On)}
 
Theoremonnog 41823 Every ordinal maps to a surreal number. (Contributed by RP, 21-Sep-2023.)
((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o}) → (𝐴 × {𝐵}) ∈ No )
 
Theoremonnobdayg 41824 Every ordinal maps to a surreal number of that birthday. (Contributed by RP, 21-Sep-2023.)
((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o}) → ( bday ‘(𝐴 × {𝐵})) = 𝐴)
 
Theorembdaybndex 41825 Bounds formed from the birthday are surreal numbers. (Contributed by RP, 21-Sep-2023.)
((𝐴 No 𝐵 = ( bday 𝐴) ∧ 𝐶 ∈ {1o, 2o}) → (𝐵 × {𝐶}) ∈ No )
 
Theorembdaybndbday 41826 Bounds formed from the birthday have the same birthday. (Contributed by RP, 30-Sep-2023.)
((𝐴 No 𝐵 = ( bday 𝐴) ∧ 𝐶 ∈ {1o, 2o}) → ( bday ‘(𝐵 × {𝐶})) = ( bday 𝐴))
 
Theoremonno 41827 Every ordinal maps to a surreal number. (Contributed by RP, 21-Sep-2023.)
(𝐴 ∈ On → (𝐴 × {2o}) ∈ No )
 
Theoremonnoi 41828 Every ordinal maps to a surreal number. (Contributed by RP, 21-Sep-2023.)
𝐴 ∈ On       (𝐴 × {2o}) ∈ No
 
Theorem0no 41829 Ordinal zero maps to a surreal number. (Contributed by RP, 21-Sep-2023.)
∅ ∈ No
 
Theorem1no 41830 Ordinal one maps to a surreal number. (Contributed by RP, 21-Sep-2023.)
(1o × {2o}) ∈ No
 
Theorem2no 41831 Ordinal two maps to a surreal number. (Contributed by RP, 21-Sep-2023.)
(2o × {2o}) ∈ No
 
Theorem3no 41832 Ordinal three maps to a surreal number. (Contributed by RP, 21-Sep-2023.)
(3o × {2o}) ∈ No
 
Theorem4no 41833 Ordinal four maps to a surreal number. (Contributed by RP, 21-Sep-2023.)
(4o × {2o}) ∈ No
 
Theoremfnimafnex 41834 The functional image of a function value exists. (Contributed by RP, 31-Oct-2024.)
𝐹 Fn 𝐵       (𝐹 “ (𝐺𝐴)) ∈ V
 
21.32.4  Short Studies
 
Theoremnlimsuc 41835 A successor is not a limit ordinal. (Contributed by RP, 13-Dec-2024.)
(𝐴 ∈ On → ¬ Lim suc 𝐴)
 
Theoremnlim1NEW 41836 1 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024.) (Proof shortened by RP, 13-Dec-2024.)
¬ Lim 1o
 
Theoremnlim2NEW 41837 2 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024.) (Proof shortened by RP, 13-Dec-2024.)
¬ Lim 2o
 
Theoremnlim3 41838 3 is not a limit ordinal. (Contributed by RP, 13-Dec-2024.)
¬ Lim 3o
 
Theoremnlim4 41839 4 is not a limit ordinal. (Contributed by RP, 13-Dec-2024.)
¬ Lim 4o
 
Theoremoa1un 41840 Given 𝐴 ∈ On, let 𝐴 +o 1o be defined to be the union of 𝐴 and {𝐴}. Compare with oa1suc 8482. (Contributed by RP, 27-Sep-2023.)
(𝐴 ∈ On → (𝐴 +o 1o) = (𝐴 ∪ {𝐴}))
 
Theoremoa1cl 41841 𝐴 +o 1o is in On. (Contributed by RP, 27-Sep-2023.)
(𝐴 ∈ On → (𝐴 +o 1o) ∈ On)
 
Theorem0finon 41842 0 is a finite ordinal. See peano1 7830. (Contributed by RP, 27-Sep-2023.)
∅ ∈ (On ∩ Fin)
 
Theorem1finon 41843 1 is a finite ordinal. See 1onn 8591. (Contributed by RP, 27-Sep-2023.)
1o ∈ (On ∩ Fin)
 
Theorem2finon 41844 2 is a finite ordinal. See 1onn 8591. (Contributed by RP, 27-Sep-2023.)
2o ∈ (On ∩ Fin)
 
Theorem3finon 41845 3 is a finite ordinal. See 1onn 8591. (Contributed by RP, 27-Sep-2023.)
3o ∈ (On ∩ Fin)
 
Theorem4finon 41846 4 is a finite ordinal. See 1onn 8591. (Contributed by RP, 27-Sep-2023.)
4o ∈ (On ∩ Fin)
 
Theoremfinona1cl 41847 The finite ordinals are closed under the add one operation. (Contributed by RP, 27-Sep-2023.)
(𝑁 ∈ (On ∩ Fin) → (𝑁 +o 1o) ∈ (On ∩ Fin))
 
Theoremfinonex 41848 The finite ordinals are a set. See also onprc 7717 and fiprc 8996 for proof that On and Fin are proper classes. (Contributed by RP, 27-Sep-2023.)
(On ∩ Fin) ∈ V
 
Theoremfzunt 41849 Union of two adjacent finite sets of sequential integers that share a common endpoint. (Suggested by NM, 21-Jul-2005.) (Contributed by RP, 14-Dec-2024.)
(((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾𝑀𝑀𝑁)) → ((𝐾...𝑀) ∪ (𝑀...𝑁)) = (𝐾...𝑁))
 
Theoremfzuntd 41850 Union of two adjacent finite sets of sequential integers that share a common endpoint. (Contributed by RP, 14-Dec-2024.)
(𝜑𝐾 ∈ ℤ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝐾𝑀)    &   (𝜑𝑀𝑁)       (𝜑 → ((𝐾...𝑀) ∪ (𝑀...𝑁)) = (𝐾...𝑁))
 
Theoremfzunt1d 41851 Union of two overlapping finite sets of sequential integers. (Contributed by RP, 14-Dec-2024.)
(𝜑𝐾 ∈ ℤ)    &   (𝜑𝐿 ∈ ℤ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝐾𝑀)    &   (𝜑𝑀𝐿)    &   (𝜑𝐿𝑁)       (𝜑 → ((𝐾...𝐿) ∪ (𝑀...𝑁)) = (𝐾...𝑁))
 
Theoremfzuntgd 41852 Union of two adjacent or overlapping finite sets of sequential integers. (Contributed by RP, 14-Dec-2024.)
(𝜑𝐾 ∈ ℤ)    &   (𝜑𝐿 ∈ ℤ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝐾𝑀)    &   (𝜑𝑀 ≤ (𝐿 + 1))    &   (𝜑𝐿𝑁)       (𝜑 → ((𝐾...𝐿) ∪ (𝑀...𝑁)) = (𝐾...𝑁))
 
21.32.4.1  Additional work on conditional logical operator
 
Theoremifpan123g 41853 Conjunction of conditional logical operators. (Contributed by RP, 18-Apr-2020.)
((if-(𝜑, 𝜒, 𝜏) ∧ if-(𝜓, 𝜃, 𝜂)) ↔ (((¬ 𝜑𝜒) ∧ (𝜑𝜏)) ∧ ((¬ 𝜓𝜃) ∧ (𝜓𝜂))))
 
Theoremifpan23 41854 Conjunction of conditional logical operators. (Contributed by RP, 20-Apr-2020.)
((if-(𝜑, 𝜓, 𝜒) ∧ if-(𝜑, 𝜃, 𝜏)) ↔ if-(𝜑, (𝜓𝜃), (𝜒𝜏)))
 
Theoremifpdfor2 41855 Define or in terms of conditional logic operator. (Contributed by RP, 20-Apr-2020.)
((𝜑𝜓) ↔ if-(𝜑, 𝜑, 𝜓))
 
Theoremifporcor 41856 Corollary of commutation of or. (Contributed by RP, 20-Apr-2020.)
(if-(𝜑, 𝜑, 𝜓) ↔ if-(𝜓, 𝜓, 𝜑))
 
Theoremifpdfan2 41857 Define and with conditional logic operator. (Contributed by RP, 25-Apr-2020.)
((𝜑𝜓) ↔ if-(𝜑, 𝜓, 𝜑))
 
Theoremifpancor 41858 Corollary of commutation of and. (Contributed by RP, 25-Apr-2020.)
(if-(𝜑, 𝜓, 𝜑) ↔ if-(𝜓, 𝜑, 𝜓))
 
Theoremifpdfor 41859 Define or in terms of conditional logic operator and true. (Contributed by RP, 20-Apr-2020.)
((𝜑𝜓) ↔ if-(𝜑, ⊤, 𝜓))
 
Theoremifpdfan 41860 Define and with conditional logic operator and false. (Contributed by RP, 20-Apr-2020.)
((𝜑𝜓) ↔ if-(𝜑, 𝜓, ⊥))
 
Theoremifpbi2 41861 Equivalence theorem for conditional logical operators. (Contributed by RP, 14-Apr-2020.)
((𝜑𝜓) → (if-(𝜒, 𝜑, 𝜃) ↔ if-(𝜒, 𝜓, 𝜃)))
 
Theoremifpbi3 41862 Equivalence theorem for conditional logical operators. (Contributed by RP, 14-Apr-2020.)
((𝜑𝜓) → (if-(𝜒, 𝜃, 𝜑) ↔ if-(𝜒, 𝜃, 𝜓)))
 
Theoremifpim1 41863 Restate implication as conditional logic operator. (Contributed by RP, 20-Apr-2020.)
((𝜑𝜓) ↔ if-(¬ 𝜑, ⊤, 𝜓))
 
Theoremifpnot 41864 Restate negated wff as conditional logic operator. (Contributed by RP, 20-Apr-2020.)
𝜑 ↔ if-(𝜑, ⊥, ⊤))
 
Theoremifpid2 41865 Restate wff as conditional logic operator. (Contributed by RP, 20-Apr-2020.)
(𝜑 ↔ if-(𝜑, ⊤, ⊥))
 
Theoremifpim2 41866 Restate implication as conditional logic operator. (Contributed by RP, 20-Apr-2020.)
((𝜑𝜓) ↔ if-(𝜓, ⊤, ¬ 𝜑))
 
Theoremifpbi23 41867 Equivalence theorem for conditional logical operators. (Contributed by RP, 15-Apr-2020.)
(((𝜑𝜓) ∧ (𝜒𝜃)) → (if-(𝜏, 𝜑, 𝜒) ↔ if-(𝜏, 𝜓, 𝜃)))
 
Theoremifpbiidcor 41868 Restatement of biid 260. (Contributed by RP, 25-Apr-2020.)
if-(𝜑, 𝜑, ¬ 𝜑)
 
Theoremifpbicor 41869 Corollary of commutation of biconditional. (Contributed by RP, 25-Apr-2020.)
(if-(𝜑, 𝜓, ¬ 𝜓) ↔ if-(𝜓, 𝜑, ¬ 𝜑))
 
Theoremifpxorcor 41870 Corollary of commutation of biconditional. (Contributed by RP, 25-Apr-2020.)
(if-(𝜑, ¬ 𝜓, 𝜓) ↔ if-(𝜓, ¬ 𝜑, 𝜑))
 
Theoremifpbi1 41871 Equivalence theorem for conditional logical operators. (Contributed by RP, 14-Apr-2020.)
((𝜑𝜓) → (if-(𝜑, 𝜒, 𝜃) ↔ if-(𝜓, 𝜒, 𝜃)))
 
Theoremifpnot23 41872 Negation of conditional logical operator. (Contributed by RP, 18-Apr-2020.)
(¬ if-(𝜑, 𝜓, 𝜒) ↔ if-(𝜑, ¬ 𝜓, ¬ 𝜒))
 
Theoremifpnotnotb 41873 Factor conditional logic operator over negation in terms 2 and 3. (Contributed by RP, 21-Apr-2020.)
(if-(𝜑, ¬ 𝜓, ¬ 𝜒) ↔ ¬ if-(𝜑, 𝜓, 𝜒))
 
Theoremifpnorcor 41874 Corollary of commutation of nor. (Contributed by RP, 25-Apr-2020.)
(if-(𝜑, ¬ 𝜑, ¬ 𝜓) ↔ if-(𝜓, ¬ 𝜓, ¬ 𝜑))
 
Theoremifpnancor 41875 Corollary of commutation of and. (Contributed by RP, 25-Apr-2020.)
(if-(𝜑, ¬ 𝜓, ¬ 𝜑) ↔ if-(𝜓, ¬ 𝜑, ¬ 𝜓))
 
Theoremifpnot23b 41876 Negation of conditional logical operator. (Contributed by RP, 25-Apr-2020.)
(¬ if-(𝜑, ¬ 𝜓, 𝜒) ↔ if-(𝜑, 𝜓, ¬ 𝜒))
 
Theoremifpbiidcor2 41877 Restatement of biid 260. (Contributed by RP, 25-Apr-2020.)
¬ if-(𝜑, ¬ 𝜑, 𝜑)
 
Theoremifpnot23c 41878 Negation of conditional logical operator. (Contributed by RP, 25-Apr-2020.)
(¬ if-(𝜑, 𝜓, ¬ 𝜒) ↔ if-(𝜑, ¬ 𝜓, 𝜒))
 
Theoremifpnot23d 41879 Negation of conditional logical operator. (Contributed by RP, 25-Apr-2020.)
(¬ if-(𝜑, ¬ 𝜓, ¬ 𝜒) ↔ if-(𝜑, 𝜓, 𝜒))
 
Theoremifpdfnan 41880 Define nand as conditional logic operator. (Contributed by RP, 20-Apr-2020.)
((𝜑𝜓) ↔ if-(𝜑, ¬ 𝜓, ⊤))
 
Theoremifpdfxor 41881 Define xor as conditional logic operator. (Contributed by RP, 20-Apr-2020.)
((𝜑𝜓) ↔ if-(𝜑, ¬ 𝜓, 𝜓))
 
Theoremifpbi12 41882 Equivalence theorem for conditional logical operators. (Contributed by RP, 15-Apr-2020.)
(((𝜑𝜓) ∧ (𝜒𝜃)) → (if-(𝜑, 𝜒, 𝜏) ↔ if-(𝜓, 𝜃, 𝜏)))
 
Theoremifpbi13 41883 Equivalence theorem for conditional logical operators. (Contributed by RP, 15-Apr-2020.)
(((𝜑𝜓) ∧ (𝜒𝜃)) → (if-(𝜑, 𝜏, 𝜒) ↔ if-(𝜓, 𝜏, 𝜃)))
 
Theoremifpbi123 41884 Equivalence theorem for conditional logical operators. (Contributed by RP, 15-Apr-2020.)
(((𝜑𝜓) ∧ (𝜒𝜃) ∧ (𝜏𝜂)) → (if-(𝜑, 𝜒, 𝜏) ↔ if-(𝜓, 𝜃, 𝜂)))
 
Theoremifpidg 41885 Restate wff as conditional logic operator. (Contributed by RP, 20-Apr-2020.)
((𝜃 ↔ if-(𝜑, 𝜓, 𝜒)) ↔ ((((𝜑𝜓) → 𝜃) ∧ ((𝜑𝜃) → 𝜓)) ∧ ((𝜒 → (𝜑𝜃)) ∧ (𝜃 → (𝜑𝜒)))))
 
Theoremifpid3g 41886 Restate wff as conditional logic operator. (Contributed by RP, 20-Apr-2020.)
((𝜒 ↔ if-(𝜑, 𝜓, 𝜒)) ↔ (((𝜑𝜓) → 𝜒) ∧ ((𝜑𝜒) → 𝜓)))
 
Theoremifpid2g 41887 Restate wff as conditional logic operator. (Contributed by RP, 20-Apr-2020.)
((𝜓 ↔ if-(𝜑, 𝜓, 𝜒)) ↔ ((𝜓 → (𝜑𝜒)) ∧ (𝜒 → (𝜑𝜓))))
 
Theoremifpid1g 41888 Restate wff as conditional logic operator. (Contributed by RP, 20-Apr-2020.)
((𝜑 ↔ if-(𝜑, 𝜓, 𝜒)) ↔ ((𝜒𝜑) ∧ (𝜑𝜓)))
 
Theoremifpim23g 41889 Restate implication as conditional logic operator. (Contributed by RP, 25-Apr-2020.)
(((𝜑𝜓) ↔ if-(𝜒, 𝜓, ¬ 𝜑)) ↔ (((𝜑𝜓) → 𝜒) ∧ (𝜒 → (𝜑𝜓))))
 
Theoremifpim3 41890 Restate implication as conditional logic operator. (Contributed by RP, 25-Apr-2020.)
((𝜑𝜓) ↔ if-(𝜑, 𝜓, ¬ 𝜑))
 
Theoremifpnim1 41891 Restate negated implication as conditional logic operator. (Contributed by RP, 25-Apr-2020.)
(¬ (𝜑𝜓) ↔ if-(𝜑, ¬ 𝜓, 𝜑))
 
Theoremifpim4 41892 Restate implication as conditional logic operator. (Contributed by RP, 25-Apr-2020.)
((𝜑𝜓) ↔ if-(𝜓, 𝜓, ¬ 𝜑))
 
Theoremifpnim2 41893 Restate negated implication as conditional logic operator. (Contributed by RP, 25-Apr-2020.)
(¬ (𝜑𝜓) ↔ if-(𝜓, ¬ 𝜓, 𝜑))
 
Theoremifpim123g 41894 Implication of conditional logical operators. The right hand side is basically conjunctive normal form which is useful in proofs. (Contributed by RP, 16-Apr-2020.)
((if-(𝜑, 𝜒, 𝜏) → if-(𝜓, 𝜃, 𝜂)) ↔ ((((𝜑 → ¬ 𝜓) ∨ (𝜒𝜃)) ∧ ((𝜓𝜑) ∨ (𝜏𝜃))) ∧ (((𝜑𝜓) ∨ (𝜒𝜂)) ∧ ((¬ 𝜓𝜑) ∨ (𝜏𝜂)))))
 
Theoremifpim1g 41895 Implication of conditional logical operators. (Contributed by RP, 18-Apr-2020.)
((if-(𝜑, 𝜒, 𝜃) → if-(𝜓, 𝜒, 𝜃)) ↔ (((𝜓𝜑) ∨ (𝜃𝜒)) ∧ ((𝜑𝜓) ∨ (𝜒𝜃))))
 
Theoremifp1bi 41896 Substitute the first element of conditional logical operator. (Contributed by RP, 20-Apr-2020.)
((if-(𝜑, 𝜒, 𝜃) ↔ if-(𝜓, 𝜒, 𝜃)) ↔ ((((𝜑𝜓) ∨ (𝜒𝜃)) ∧ ((𝜑𝜓) ∨ (𝜃𝜒))) ∧ (((𝜓𝜑) ∨ (𝜒𝜃)) ∧ ((𝜓𝜑) ∨ (𝜃𝜒)))))
 
Theoremifpbi1b 41897 When the first variable is irrelevant, it can be replaced. (Contributed by RP, 25-Apr-2020.)
(if-(𝜑, 𝜒, 𝜒) ↔ if-(𝜓, 𝜒, 𝜒))
 
Theoremifpimimb 41898 Factor conditional logic operator over implication in terms 2 and 3. (Contributed by RP, 21-Apr-2020.)
(if-(𝜑, (𝜓𝜒), (𝜃𝜏)) ↔ (if-(𝜑, 𝜓, 𝜃) → if-(𝜑, 𝜒, 𝜏)))
 
Theoremifpororb 41899 Factor conditional logic operator over disjunction in terms 2 and 3. (Contributed by RP, 21-Apr-2020.)
(if-(𝜑, (𝜓𝜒), (𝜃𝜏)) ↔ (if-(𝜑, 𝜓, 𝜃) ∨ if-(𝜑, 𝜒, 𝜏)))
 
Theoremifpananb 41900 Factor conditional logic operator over conjunction in terms 2 and 3. (Contributed by RP, 21-Apr-2020.)
(if-(𝜑, (𝜓𝜒), (𝜃𝜏)) ↔ (if-(𝜑, 𝜓, 𝜃) ∧ if-(𝜑, 𝜒, 𝜏)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47372
  Copyright terms: Public domain < Previous  Next >