Home | Metamath
Proof Explorer Theorem List (p. 419 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ismnuprim 41801* | Express the predicate on 𝑈 in ismnu 41768 using only primitives. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ (∀𝑧 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑈 ∧ ∀𝑓∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) ↔ ∀𝑧(𝑧 ∈ 𝑈 → ∀𝑓 ¬ ∀𝑤(𝑤 ∈ 𝑈 → ¬ ∀𝑣 ¬ ((∀𝑡(𝑡 ∈ 𝑣 → 𝑡 ∈ 𝑧) → ¬ (𝑣 ∈ 𝑈 → ¬ 𝑣 ∈ 𝑤)) → ¬ ∀𝑖(𝑖 ∈ 𝑧 → (𝑣 ∈ 𝑈 → (𝑖 ∈ 𝑣 → (𝑣 ∈ 𝑓 → ¬ ∀𝑢(𝑢 ∈ 𝑓 → (𝑖 ∈ 𝑢 → ¬ ∀𝑜(𝑜 ∈ 𝑢 → ∀𝑠(𝑠 ∈ 𝑜 → 𝑠 ∈ 𝑤)))))))))))) | ||
Theorem | rr-grothprimbi 41802* | Express "every set is contained in a Grothendieck universe" using only primitives. The right side (without the outermost universal quantifier) is proven as rr-grothprim 41807. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ (∀𝑥∃𝑦 ∈ Univ 𝑥 ∈ 𝑦 ↔ ∀𝑥 ¬ ∀𝑦(𝑥 ∈ 𝑦 → ¬ ∀𝑧(𝑧 ∈ 𝑦 → ∀𝑓 ¬ ∀𝑤(𝑤 ∈ 𝑦 → ¬ ∀𝑣 ¬ ((∀𝑡(𝑡 ∈ 𝑣 → 𝑡 ∈ 𝑧) → ¬ (𝑣 ∈ 𝑦 → ¬ 𝑣 ∈ 𝑤)) → ¬ ∀𝑖(𝑖 ∈ 𝑧 → (𝑣 ∈ 𝑦 → (𝑖 ∈ 𝑣 → (𝑣 ∈ 𝑓 → ¬ ∀𝑢(𝑢 ∈ 𝑓 → (𝑖 ∈ 𝑢 → ¬ ∀𝑜(𝑜 ∈ 𝑢 → ∀𝑠(𝑠 ∈ 𝑜 → 𝑠 ∈ 𝑤))))))))))))) | ||
Theorem | inagrud 41803 | Inaccessible levels of the cumulative hierarchy are Grothendieck universes. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ (𝜑 → 𝐼 ∈ Inacc) ⇒ ⊢ (𝜑 → (𝑅1‘𝐼) ∈ Univ) | ||
Theorem | inaex 41804* | Assuming the Tarski-Grothendieck axiom, every ordinal is contained in an inaccessible ordinal. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ (𝐴 ∈ On → ∃𝑥 ∈ Inacc 𝐴 ∈ 𝑥) | ||
Theorem | gruex 41805* | Assuming the Tarski-Grothendieck axiom, every set is contained in a Grothendieck universe. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ ∃𝑦 ∈ Univ 𝑥 ∈ 𝑦 | ||
Theorem | rr-groth 41806* | An equivalent of ax-groth 10510 using only simple defined symbols. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∀𝑓∃𝑤 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑦 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))))) | ||
Theorem | rr-grothprim 41807* | An equivalent of ax-groth 10510 using only primitives. This uses only 123 symbols, which is significantly less than the previous record of 163 established by grothprim 10521 (which uses some defined symbols, and requires 229 symbols if expanded to primitives). (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ ¬ ∀𝑦(𝑥 ∈ 𝑦 → ¬ ∀𝑧(𝑧 ∈ 𝑦 → ∀𝑓 ¬ ∀𝑤(𝑤 ∈ 𝑦 → ¬ ∀𝑣 ¬ ((∀𝑡(𝑡 ∈ 𝑣 → 𝑡 ∈ 𝑧) → ¬ (𝑣 ∈ 𝑦 → ¬ 𝑣 ∈ 𝑤)) → ¬ ∀𝑖(𝑖 ∈ 𝑧 → (𝑣 ∈ 𝑦 → (𝑖 ∈ 𝑣 → (𝑣 ∈ 𝑓 → ¬ ∀𝑢(𝑢 ∈ 𝑓 → (𝑖 ∈ 𝑢 → ¬ ∀𝑜(𝑜 ∈ 𝑢 → ∀𝑠(𝑠 ∈ 𝑜 → 𝑠 ∈ 𝑤)))))))))))) | ||
Theorem | ismnushort 41808* | Express the predicate on 𝑈 and 𝑧 in ismnu 41768 in a shorter form while avoiding complicated definitions. (Contributed by Rohan Ridenour, 10-Oct-2024.) |
⊢ (∀𝑓 ∈ 𝒫 𝑈∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ (𝑈 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤)) ↔ (𝒫 𝑧 ⊆ 𝑈 ∧ ∀𝑓∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))))) | ||
Theorem | dfuniv2 41809* | Alternative definition of Univ using only simple defined symbols. (Contributed by Rohan Ridenour, 10-Oct-2024.) |
⊢ Univ = {𝑦 ∣ ∀𝑧 ∈ 𝑦 ∀𝑓 ∈ 𝒫 𝑦∃𝑤 ∈ 𝑦 (𝒫 𝑧 ⊆ (𝑦 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤))} | ||
Theorem | rr-grothshortbi 41810* | Express "every set is contained in a Grothendieck universe" in a short form while avoiding complicated definitions. (Contributed by Rohan Ridenour, 8-Oct-2024.) |
⊢ (∀𝑥∃𝑦 ∈ Univ 𝑥 ∈ 𝑦 ↔ ∀𝑥∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 ∀𝑓 ∈ 𝒫 𝑦∃𝑤 ∈ 𝑦 (𝒫 𝑧 ⊆ (𝑦 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤)))) | ||
Theorem | rr-grothshort 41811* | A shorter equivalent of ax-groth 10510 than rr-groth 41806 using a few more simple defined symbols. (Contributed by Rohan Ridenour, 8-Oct-2024.) |
⊢ ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 ∀𝑓 ∈ 𝒫 𝑦∃𝑤 ∈ 𝑦 (𝒫 𝑧 ⊆ (𝑦 ∩ 𝑤) ∧ (𝑧 ∩ ∪ 𝑓) ⊆ ∪ (𝑓 ∩ 𝒫 𝒫 𝑤))) | ||
Theorem | nanorxor 41812 | 'nand' is equivalent to the equivalence of inclusive and exclusive or. (Contributed by Steve Rodriguez, 28-Feb-2020.) |
⊢ ((𝜑 ⊼ 𝜓) ↔ ((𝜑 ∨ 𝜓) ↔ (𝜑 ⊻ 𝜓))) | ||
Theorem | undisjrab 41813 | Union of two disjoint restricted class abstractions; compare unrab 4236. (Contributed by Steve Rodriguez, 28-Feb-2020.) |
⊢ (({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ 𝜓}) = ∅ ↔ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ⊻ 𝜓)}) | ||
Theorem | iso0 41814 | The empty set is an 𝑅, 𝑆 isomorphism from the empty set to the empty set. (Contributed by Steve Rodriguez, 24-Oct-2015.) |
⊢ ∅ Isom 𝑅, 𝑆 (∅, ∅) | ||
Theorem | ssrecnpr 41815 | ℝ is a subset of both ℝ and ℂ. (Contributed by Steve Rodriguez, 22-Nov-2015.) |
⊢ (𝑆 ∈ {ℝ, ℂ} → ℝ ⊆ 𝑆) | ||
Theorem | seff 41816 | Let set 𝑆 be the real or complex numbers. Then the exponential function restricted to 𝑆 is a mapping from 𝑆 to 𝑆. (Contributed by Steve Rodriguez, 6-Nov-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) ⇒ ⊢ (𝜑 → (exp ↾ 𝑆):𝑆⟶𝑆) | ||
Theorem | sblpnf 41817 | The infinity ball in the absolute value metric is just the whole space. 𝑆 analogue of blpnf 23458. (Contributed by Steve Rodriguez, 8-Nov-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ 𝐷 = ((abs ∘ − ) ↾ (𝑆 × 𝑆)) ⇒ ⊢ ((𝜑 ∧ 𝑃 ∈ 𝑆) → (𝑃(ball‘𝐷)+∞) = 𝑆) | ||
Theorem | prmunb2 41818* | The primes are unbounded. This generalizes prmunb 16543 to real 𝐴 with arch 12160 and lttrd 11066: every real is less than some positive integer, itself less than some prime. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
⊢ (𝐴 ∈ ℝ → ∃𝑝 ∈ ℙ 𝐴 < 𝑝) | ||
Theorem | dvgrat 41819* | Ratio test for divergence of a complex infinite series. See e.g. remark "if (abs‘((𝑎‘(𝑛 + 1)) / (𝑎‘𝑛))) ≥ 1 for all large n..." in https://en.wikipedia.org/wiki/Ratio_test#The_test. (Contributed by Steve Rodriguez, 28-Feb-2020.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → (𝐹‘𝑘) ≠ 0) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → (abs‘(𝐹‘𝑘)) ≤ (abs‘(𝐹‘(𝑘 + 1)))) ⇒ ⊢ (𝜑 → seq𝑀( + , 𝐹) ∉ dom ⇝ ) | ||
Theorem | cvgdvgrat 41820* |
Ratio test for convergence and divergence of a complex infinite series.
If the ratio 𝑅 of the absolute values of successive
terms in an
infinite sequence 𝐹 converges to less than one, then the
infinite
sum of the terms of 𝐹 converges to a complex number; and
if 𝑅
converges greater then the sum diverges. This combined form of
cvgrat 15523 and dvgrat 41819 directly uses the limit of the ratio.
(It also demonstrates how to use climi2 15148 and absltd 15069 to transform a limit to an inequality cf. https://math.stackexchange.com/q/2215191 15069, and how to use r19.29a 3217 in a similar fashion to Mario Carneiro's proof sketch with rexlimdva 3212 at https://groups.google.com/g/metamath/c/2RPikOiXLMo 3212.) (Contributed by Steve Rodriguez, 28-Feb-2020.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝑁 ∈ 𝑍) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → (𝐹‘𝑘) ≠ 0) & ⊢ 𝑅 = (𝑘 ∈ 𝑊 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹‘𝑘)))) & ⊢ (𝜑 → 𝑅 ⇝ 𝐿) & ⊢ (𝜑 → 𝐿 ≠ 1) ⇒ ⊢ (𝜑 → (𝐿 < 1 ↔ seq𝑀( + , 𝐹) ∈ dom ⇝ )) | ||
Theorem | radcnvrat 41821* | Let 𝐿 be the limit, if one exists, of the ratio (abs‘((𝐴‘(𝑘 + 1)) / (𝐴‘𝑘))) (as in the ratio test cvgdvgrat 41820) as 𝑘 increases. Then the radius of convergence of power series Σ𝑛 ∈ ℕ0((𝐴‘𝑛) · (𝑥↑𝑛)) is (1 / 𝐿) if 𝐿 is nonzero. Proof "The limit involved in the ratio test..." in https://en.wikipedia.org/wiki/Radius_of_convergence 41820 —a few lines that evidently hide quite an involved process to confirm. (Contributed by Steve Rodriguez, 8-Mar-2020.) |
⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝐷 = (𝑘 ∈ ℕ0 ↦ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴‘𝑘)))) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐴‘𝑘) ≠ 0) & ⊢ (𝜑 → 𝐷 ⇝ 𝐿) & ⊢ (𝜑 → 𝐿 ≠ 0) ⇒ ⊢ (𝜑 → 𝑅 = (1 / 𝐿)) | ||
Theorem | reldvds 41822 | The divides relation is in fact a relation. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
⊢ Rel ∥ | ||
Theorem | nznngen 41823 | All positive integers in the set of multiples of n, nℤ, are the absolute value of n or greater. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (( ∥ “ {𝑁}) ∩ ℕ) ⊆ (ℤ≥‘(abs‘𝑁))) | ||
Theorem | nzss 41824 | The set of multiples of m, mℤ, is a subset of those of n, nℤ, iff n divides m. Lemma 2.1(a) of https://www.mscs.dal.ca/~selinger/3343/handouts/ideals.pdf p. 5, with mℤ and nℤ as images of the divides relation under m and n. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ 𝑉) ⇒ ⊢ (𝜑 → (( ∥ “ {𝑀}) ⊆ ( ∥ “ {𝑁}) ↔ 𝑁 ∥ 𝑀)) | ||
Theorem | nzin 41825 | The intersection of the set of multiples of m, mℤ, and those of n, nℤ, is the set of multiples of their least common multiple. Roughly Lemma 2.1(c) of https://www.mscs.dal.ca/~selinger/3343/handouts/ideals.pdf p. 5 and Problem 1(b) of https://people.math.binghamton.edu/mazur/teach/40107/40107h16sol.pdf p. 1, with mℤ and nℤ as images of the divides relation under m and n. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (( ∥ “ {𝑀}) ∩ ( ∥ “ {𝑁})) = ( ∥ “ {(𝑀 lcm 𝑁)})) | ||
Theorem | nzprmdif 41826 | Subtract one prime's multiples from an unequal prime's. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℙ) & ⊢ (𝜑 → 𝑁 ∈ ℙ) & ⊢ (𝜑 → 𝑀 ≠ 𝑁) ⇒ ⊢ (𝜑 → (( ∥ “ {𝑀}) ∖ ( ∥ “ {𝑁})) = (( ∥ “ {𝑀}) ∖ ( ∥ “ {(𝑀 · 𝑁)}))) | ||
Theorem | hashnzfz 41827 | Special case of hashdvds 16404: the count of multiples in nℤ restricted to an interval. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐽 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘(𝐽 − 1))) ⇒ ⊢ (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (𝐽...𝐾))) = ((⌊‘(𝐾 / 𝑁)) − (⌊‘((𝐽 − 1) / 𝑁)))) | ||
Theorem | hashnzfz2 41828 | Special case of hashnzfz 41827: the count of multiples in nℤ, n greater than one, restricted to an interval starting at two. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) & ⊢ (𝜑 → 𝐾 ∈ ℕ) ⇒ ⊢ (𝜑 → (♯‘(( ∥ “ {𝑁}) ∩ (2...𝐾))) = (⌊‘(𝐾 / 𝑁))) | ||
Theorem | hashnzfzclim 41829* | As the upper bound 𝐾 of the constraint interval (𝐽...𝐾) in hashnzfz 41827 increases, the resulting count of multiples tends to (𝐾 / 𝑀) —that is, there are approximately (𝐾 / 𝑀) multiples of 𝑀 in a finite interval of integers. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐽 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑘 ∈ (ℤ≥‘(𝐽 − 1)) ↦ ((♯‘(( ∥ “ {𝑀}) ∩ (𝐽...𝑘))) / 𝑘)) ⇝ (1 / 𝑀)) | ||
Theorem | caofcan 41830* | Transfer a cancellation law like mulcan 11542 to the function operation. (Contributed by Steve Rodriguez, 16-Nov-2015.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝑇) & ⊢ (𝜑 → 𝐺:𝐴⟶𝑆) & ⊢ (𝜑 → 𝐻:𝐴⟶𝑆) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → ((𝑥𝑅𝑦) = (𝑥𝑅𝑧) ↔ 𝑦 = 𝑧)) ⇒ ⊢ (𝜑 → ((𝐹 ∘f 𝑅𝐺) = (𝐹 ∘f 𝑅𝐻) ↔ 𝐺 = 𝐻)) | ||
Theorem | ofsubid 41831 | Function analogue of subid 11170. (Contributed by Steve Rodriguez, 5-Nov-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) → (𝐹 ∘f − 𝐹) = (𝐴 × {0})) | ||
Theorem | ofmul12 41832 | Function analogue of mul12 11070. (Contributed by Steve Rodriguez, 13-Nov-2015.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶ℂ ∧ 𝐻:𝐴⟶ℂ)) → (𝐹 ∘f · (𝐺 ∘f · 𝐻)) = (𝐺 ∘f · (𝐹 ∘f · 𝐻))) | ||
Theorem | ofdivrec 41833 | Function analogue of divrec 11579, a division analogue of ofnegsub 11901. (Contributed by Steve Rodriguez, 3-Nov-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → (𝐹 ∘f · ((𝐴 × {1}) ∘f / 𝐺)) = (𝐹 ∘f / 𝐺)) | ||
Theorem | ofdivcan4 41834 | Function analogue of divcan4 11590. (Contributed by Steve Rodriguez, 4-Nov-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶(ℂ ∖ {0})) → ((𝐹 ∘f · 𝐺) ∘f / 𝐺) = 𝐹) | ||
Theorem | ofdivdiv2 41835 | Function analogue of divdiv2 11617. (Contributed by Steve Rodriguez, 23-Nov-2015.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶ℂ) ∧ (𝐺:𝐴⟶(ℂ ∖ {0}) ∧ 𝐻:𝐴⟶(ℂ ∖ {0}))) → (𝐹 ∘f / (𝐺 ∘f / 𝐻)) = ((𝐹 ∘f · 𝐻) ∘f / 𝐺)) | ||
Theorem | lhe4.4ex1a 41836 | Example of the Fundamental Theorem of Calculus, part two (ftc2 25113): ∫(1(,)2)((𝑥↑2) − 3) d𝑥 = -(2 / 3). Section 4.4 example 1a of [LarsonHostetlerEdwards] p. 311. (The book teaches ftc2 25113 as simply the "Fundamental Theorem of Calculus", then ftc1 25111 as the "Second Fundamental Theorem of Calculus".) (Contributed by Steve Rodriguez, 28-Oct-2015.) (Revised by Steve Rodriguez, 31-Oct-2015.) |
⊢ ∫(1(,)2)((𝑥↑2) − 3) d𝑥 = -(2 / 3) | ||
Theorem | dvsconst 41837 | Derivative of a constant function on the real or complex numbers. The function may return a complex 𝐴 even if 𝑆 is ℝ. (Contributed by Steve Rodriguez, 11-Nov-2015.) |
⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ 𝐴 ∈ ℂ) → (𝑆 D (𝑆 × {𝐴})) = (𝑆 × {0})) | ||
Theorem | dvsid 41838 | Derivative of the identity function on the real or complex numbers. (Contributed by Steve Rodriguez, 11-Nov-2015.) |
⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D ( I ↾ 𝑆)) = (𝑆 × {1})) | ||
Theorem | dvsef 41839 | Derivative of the exponential function on the real or complex numbers. (Contributed by Steve Rodriguez, 12-Nov-2015.) |
⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 D (exp ↾ 𝑆)) = (exp ↾ 𝑆)) | ||
Theorem | expgrowthi 41840* | Exponential growth and decay model. See expgrowth 41842 for more information. (Contributed by Steve Rodriguez, 4-Nov-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐾 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ 𝑌 = (𝑡 ∈ 𝑆 ↦ (𝐶 · (exp‘(𝐾 · 𝑡)))) ⇒ ⊢ (𝜑 → (𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌)) | ||
Theorem | dvconstbi 41841* | The derivative of a function on 𝑆 is zero iff it is a constant function. Roughly a biconditional 𝑆 analogue of dvconst 24986 and dveq0 25069. Corresponds to integration formula "∫0 d𝑥 = 𝐶 " in section 4.1 of [LarsonHostetlerEdwards] p. 278. (Contributed by Steve Rodriguez, 11-Nov-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝑌:𝑆⟶ℂ) & ⊢ (𝜑 → dom (𝑆 D 𝑌) = 𝑆) ⇒ ⊢ (𝜑 → ((𝑆 D 𝑌) = (𝑆 × {0}) ↔ ∃𝑐 ∈ ℂ 𝑌 = (𝑆 × {𝑐}))) | ||
Theorem | expgrowth 41842* |
Exponential growth and decay model. The derivative of a function y of
variable t equals a constant k times y itself, iff
y equals some
constant C times the exponential of kt. This theorem and
expgrowthi 41840 illustrate one of the simplest and most
crucial classes of
differential equations, equations that relate functions to their
derivatives.
Section 6.3 of [Strang] p. 242 calls y' = ky "the most important differential equation in applied mathematics". In the field of population ecology it is known as the Malthusian growth model or exponential law, and C, k, and t correspond to initial population size, growth rate, and time respectively (https://en.wikipedia.org/wiki/Malthusian_growth_model 41840); and in finance, the model appears in a similar role in continuous compounding with C as the initial amount of money. In exponential decay models, k is often expressed as the negative of a positive constant λ. Here y' is given as (𝑆 D 𝑌), C as 𝑐, and ky as ((𝑆 × {𝐾}) ∘f · 𝑌). (𝑆 × {𝐾}) is the constant function that maps any real or complex input to k and ∘f · is multiplication as a function operation. The leftward direction of the biconditional is as given in http://www.saylor.org/site/wp-content/uploads/2011/06/MA221-2.1.1.pdf 41840 pp. 1-2, which also notes the reverse direction ("While we will not prove this here, it turns out that these are the only functions that satisfy this equation."). The rightward direction is Theorem 5.1 of [LarsonHostetlerEdwards] p. 375 (which notes " C is the initial value of y, and k is the proportionality constant. Exponential growth occurs when k > 0, and exponential decay occurs when k < 0."); its proof here closely follows the proof of y' = y in https://proofwiki.org/wiki/Exponential_Growth_Equation/Special_Case 41840. Statements for this and expgrowthi 41840 formulated by Mario Carneiro. (Contributed by Steve Rodriguez, 24-Nov-2015.) |
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → 𝐾 ∈ ℂ) & ⊢ (𝜑 → 𝑌:𝑆⟶ℂ) & ⊢ (𝜑 → dom (𝑆 D 𝑌) = 𝑆) ⇒ ⊢ (𝜑 → ((𝑆 D 𝑌) = ((𝑆 × {𝐾}) ∘f · 𝑌) ↔ ∃𝑐 ∈ ℂ 𝑌 = (𝑡 ∈ 𝑆 ↦ (𝑐 · (exp‘(𝐾 · 𝑡)))))) | ||
Syntax | cbcc 41843 | Extend class notation to include the generalized binomial coefficient operation. |
class C𝑐 | ||
Definition | df-bcc 41844* | Define a generalized binomial coefficient operation, which unlike df-bc 13945 allows complex numbers for the first argument. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ C𝑐 = (𝑐 ∈ ℂ, 𝑘 ∈ ℕ0 ↦ ((𝑐 FallFac 𝑘) / (!‘𝑘))) | ||
Theorem | bccval 41845 | Value of the generalized binomial coefficient, 𝐶 choose 𝐾. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐶C𝑐𝐾) = ((𝐶 FallFac 𝐾) / (!‘𝐾))) | ||
Theorem | bcccl 41846 | Closure of the generalized binomial coefficient. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐶C𝑐𝐾) ∈ ℂ) | ||
Theorem | bcc0 41847 | The generalized binomial coefficient 𝐶 choose 𝐾 is zero iff 𝐶 is an integer between zero and (𝐾 − 1) inclusive. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝐶C𝑐𝐾) = 0 ↔ 𝐶 ∈ (0...(𝐾 − 1)))) | ||
Theorem | bccp1k 41848 | Generalized binomial coefficient: 𝐶 choose (𝐾 + 1). (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐶C𝑐(𝐾 + 1)) = ((𝐶C𝑐𝐾) · ((𝐶 − 𝐾) / (𝐾 + 1)))) | ||
Theorem | bccm1k 41849 | Generalized binomial coefficient: 𝐶 choose (𝐾 − 1), when 𝐶 is not (𝐾 − 1). (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐶 ∈ (ℂ ∖ {(𝐾 − 1)})) & ⊢ (𝜑 → 𝐾 ∈ ℕ) ⇒ ⊢ (𝜑 → (𝐶C𝑐(𝐾 − 1)) = ((𝐶C𝑐𝐾) / ((𝐶 − (𝐾 − 1)) / 𝐾))) | ||
Theorem | bccn0 41850 | Generalized binomial coefficient: 𝐶 choose 0. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐶C𝑐0) = 1) | ||
Theorem | bccn1 41851 | Generalized binomial coefficient: 𝐶 choose 1. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝐶C𝑐1) = 𝐶) | ||
Theorem | bccbc 41852 | The binomial coefficient and generalized binomial coefficient are equal when their arguments are nonnegative integers. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐾 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑁C𝑐𝐾) = (𝑁C𝐾)) | ||
Theorem | uzmptshftfval 41853* | When 𝐹 is a maps-to function on some set of upper integers 𝑍 that returns a set 𝐵, (𝐹 shift 𝑁) is another maps-to function on the shifted set of upper integers 𝑊. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ 𝐹 = (𝑥 ∈ 𝑍 ↦ 𝐵) & ⊢ 𝐵 ∈ V & ⊢ (𝑥 = (𝑦 − 𝑁) → 𝐵 = 𝐶) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑊 = (ℤ≥‘(𝑀 + 𝑁)) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐹 shift 𝑁) = (𝑦 ∈ 𝑊 ↦ 𝐶)) | ||
Theorem | dvradcnv2 41854* | The radius of convergence of the (formal) derivative 𝐻 of the power series 𝐺 is (at least) as large as the radius of convergence of 𝐺. This version of dvradcnv 25485 uses a shifted version of 𝐻 to match the sum form of (ℂ D 𝐹) in pserdv2 25494 (and shows how to use uzmptshftfval 41853 to shift a maps-to function on a set of upper integers). (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ ((𝑛 · (𝐴‘𝑛)) · (𝑋↑(𝑛 − 1)))) & ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝑋) < 𝑅) ⇒ ⊢ (𝜑 → seq1( + , 𝐻) ∈ dom ⇝ ) | ||
Theorem | binomcxplemwb 41855 | Lemma for binomcxp 41864. The lemma in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) ⇒ ⊢ (𝜑 → (((𝐶 − 𝐾) · (𝐶C𝑐𝐾)) + ((𝐶 − (𝐾 − 1)) · (𝐶C𝑐(𝐾 − 1)))) = (𝐶 · (𝐶C𝑐𝐾))) | ||
Theorem | binomcxplemnn0 41856* | Lemma for binomcxp 41864. When 𝐶 is a nonnegative integer, the binomial's finite sum value by the standard binomial theorem binom 15470 equals this generalized infinite sum: the generalized binomial coefficient and exponentiation operators give exactly the same values in the standard index set (0...𝐶), and when the index set is widened beyond 𝐶 the additional values are just zeroes. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ ((𝜑 ∧ 𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) | ||
Theorem | binomcxplemrat 41857* | Lemma for binomcxp 41864. As 𝑘 increases, this ratio's absolute value converges to one. Part of equation "Since continuity of the absolute value..." in the Wikibooks proof (proven for the inverse ratio, which we later show is no problem). (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐶 − 𝑘) / (𝑘 + 1)))) ⇝ 1) | ||
Theorem | binomcxplemfrat 41858* | Lemma for binomcxp 41864. binomcxplemrat 41857 implies that when 𝐶 is not a nonnegative integer, the absolute value of the ratio ((𝐹‘(𝑘 + 1)) / (𝐹‘𝑘)) converges to one. The rest of equation "Since continuity of the absolute value..." in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) ⇒ ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (𝑘 ∈ ℕ0 ↦ (abs‘((𝐹‘(𝑘 + 1)) / (𝐹‘𝑘)))) ⇝ 1) | ||
Theorem | binomcxplemradcnv 41859* | Lemma for binomcxp 41864. By binomcxplemfrat 41858 and radcnvrat 41821 the radius of convergence of power series Σ𝑘 ∈ ℕ0((𝐹‘𝑘) · (𝑏↑𝑘)) is one. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) & ⊢ 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) ⇒ ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → 𝑅 = 1) | ||
Theorem | binomcxplemdvbinom 41860* | Lemma for binomcxp 41864. By the power and chain rules, calculate the derivative of ((1 + 𝑏)↑𝑐-𝐶), with respect to 𝑏 in the disk of convergence 𝐷. We later multiply the derivative in the later binomcxplemdvsum 41862 by this derivative to show that ((1 + 𝑏)↑𝑐𝐶) (with a nonnegated 𝐶) and the later sum, since both at 𝑏 = 0 equal one, are the same. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) & ⊢ 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1))))) & ⊢ 𝐷 = (◡abs “ (0[,)𝑅)) ⇒ ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → (ℂ D (𝑏 ∈ 𝐷 ↦ ((1 + 𝑏)↑𝑐-𝐶))) = (𝑏 ∈ 𝐷 ↦ (-𝐶 · ((1 + 𝑏)↑𝑐(-𝐶 − 1))))) | ||
Theorem | binomcxplemcvg 41861* | Lemma for binomcxp 41864. The sum in binomcxplemnn0 41856 and its derivative (see the next theorem, binomcxplemdvsum 41862) converge, as long as their base 𝐽 is within the disk of convergence. Part of remark "This convergence allows us to apply term-by-term differentiation..." in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) & ⊢ 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1))))) & ⊢ 𝐷 = (◡abs “ (0[,)𝑅)) ⇒ ⊢ ((𝜑 ∧ 𝐽 ∈ 𝐷) → (seq0( + , (𝑆‘𝐽)) ∈ dom ⇝ ∧ seq1( + , (𝐸‘𝐽)) ∈ dom ⇝ )) | ||
Theorem | binomcxplemdvsum 41862* | Lemma for binomcxp 41864. The derivative of the generalized sum in binomcxplemnn0 41856. Part of remark "This convergence allows us to apply term-by-term differentiation..." in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) & ⊢ 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1))))) & ⊢ 𝐷 = (◡abs “ (0[,)𝑅)) & ⊢ 𝑃 = (𝑏 ∈ 𝐷 ↦ Σ𝑘 ∈ ℕ0 ((𝑆‘𝑏)‘𝑘)) ⇒ ⊢ (𝜑 → (ℂ D 𝑃) = (𝑏 ∈ 𝐷 ↦ Σ𝑘 ∈ ℕ ((𝐸‘𝑏)‘𝑘))) | ||
Theorem | binomcxplemnotnn0 41863* |
Lemma for binomcxp 41864. When 𝐶 is not a nonnegative integer, the
generalized sum in binomcxplemnn0 41856 —which we will call 𝑃
—is a convergent power series: its base 𝑏 is always of
smaller absolute value than the radius of convergence.
pserdv2 25494 gives the derivative of 𝑃, which by dvradcnv 25485 also converges in that radius. When 𝐴 is fixed at one, (𝐴 + 𝑏) times that derivative equals (𝐶 · 𝑃) and fraction (𝑃 / ((𝐴 + 𝑏)↑𝑐𝐶)) is always defined with derivative zero, so the fraction is a constant—specifically one, because ((1 + 0)↑𝑐𝐶) = 1. Thus ((1 + 𝑏)↑𝑐𝐶) = (𝑃‘𝑏). Finally, let 𝑏 be (𝐵 / 𝐴), and multiply both the binomial ((1 + (𝐵 / 𝐴))↑𝑐𝐶) and the sum (𝑃‘(𝐵 / 𝐴)) by (𝐴↑𝑐𝐶) to get the result. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ 𝐹 = (𝑗 ∈ ℕ0 ↦ (𝐶C𝑐𝑗)) & ⊢ 𝑆 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ0 ↦ ((𝐹‘𝑘) · (𝑏↑𝑘)))) & ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝑆‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) & ⊢ 𝐸 = (𝑏 ∈ ℂ ↦ (𝑘 ∈ ℕ ↦ ((𝑘 · (𝐹‘𝑘)) · (𝑏↑(𝑘 − 1))))) & ⊢ 𝐷 = (◡abs “ (0[,)𝑅)) & ⊢ 𝑃 = (𝑏 ∈ 𝐷 ↦ Σ𝑘 ∈ ℕ0 ((𝑆‘𝑏)‘𝑘)) ⇒ ⊢ ((𝜑 ∧ ¬ 𝐶 ∈ ℕ0) → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) | ||
Theorem | binomcxp 41864* | Generalize the binomial theorem binom 15470 to positive real summand 𝐴, real summand 𝐵, and complex exponent 𝐶. Proof in https://en.wikibooks.org/wiki/Advanced_Calculus 15470; see also https://en.wikipedia.org/wiki/Binomial_series 15470, https://en.wikipedia.org/wiki/Binomial_theorem 15470 (sections "Newton's generalized binomial theorem" and "Future generalizations"), and proof "General Binomial Theorem" in https://proofwiki.org/wiki/Binomial_Theorem 15470. (Contributed by Steve Rodriguez, 22-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (abs‘𝐵) < (abs‘𝐴)) & ⊢ (𝜑 → 𝐶 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 + 𝐵)↑𝑐𝐶) = Σ𝑘 ∈ ℕ0 ((𝐶C𝑐𝑘) · ((𝐴↑𝑐(𝐶 − 𝑘)) · (𝐵↑𝑘)))) | ||
Theorem | pm10.12 41865* | Theorem *10.12 in [WhiteheadRussell] p. 146. In *10, this is treated as an axiom, and the proofs in *10 are based on this theorem. (Contributed by Andrew Salmon, 17-Jun-2011.) |
⊢ (∀𝑥(𝜑 ∨ 𝜓) → (𝜑 ∨ ∀𝑥𝜓)) | ||
Theorem | pm10.14 41866 | Theorem *10.14 in [WhiteheadRussell] p. 146. (Contributed by Andrew Salmon, 17-Jun-2011.) |
⊢ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) | ||
Theorem | pm10.251 41867 | Theorem *10.251 in [WhiteheadRussell] p. 149. (Contributed by Andrew Salmon, 17-Jun-2011.) |
⊢ (∀𝑥 ¬ 𝜑 → ¬ ∀𝑥𝜑) | ||
Theorem | pm10.252 41868 | Theorem *10.252 in [WhiteheadRussell] p. 149. (Contributed by Andrew Salmon, 17-Jun-2011.) (New usage is discouraged.) |
⊢ (¬ ∃𝑥𝜑 ↔ ∀𝑥 ¬ 𝜑) | ||
Theorem | pm10.253 41869 | Theorem *10.253 in [WhiteheadRussell] p. 149. (Contributed by Andrew Salmon, 17-Jun-2011.) |
⊢ (¬ ∀𝑥𝜑 ↔ ∃𝑥 ¬ 𝜑) | ||
Theorem | albitr 41870 | Theorem *10.301 in [WhiteheadRussell] p. 151. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ ((∀𝑥(𝜑 ↔ 𝜓) ∧ ∀𝑥(𝜓 ↔ 𝜒)) → ∀𝑥(𝜑 ↔ 𝜒)) | ||
Theorem | pm10.42 41871 | Theorem *10.42 in [WhiteheadRussell] p. 155. (Contributed by Andrew Salmon, 17-Jun-2011.) |
⊢ ((∃𝑥𝜑 ∨ ∃𝑥𝜓) ↔ ∃𝑥(𝜑 ∨ 𝜓)) | ||
Theorem | pm10.52 41872* | Theorem *10.52 in [WhiteheadRussell] p. 155. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∃𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) ↔ 𝜓)) | ||
Theorem | pm10.53 41873 | Theorem *10.53 in [WhiteheadRussell] p. 155. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (¬ ∃𝑥𝜑 → ∀𝑥(𝜑 → 𝜓)) | ||
Theorem | pm10.541 41874* | Theorem *10.541 in [WhiteheadRussell] p. 155. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∀𝑥(𝜑 → (𝜒 ∨ 𝜓)) ↔ (𝜒 ∨ ∀𝑥(𝜑 → 𝜓))) | ||
Theorem | pm10.542 41875* | Theorem *10.542 in [WhiteheadRussell] p. 156. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∀𝑥(𝜑 → (𝜒 → 𝜓)) ↔ (𝜒 → ∀𝑥(𝜑 → 𝜓))) | ||
Theorem | pm10.55 41876 | Theorem *10.55 in [WhiteheadRussell] p. 156. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ ((∃𝑥(𝜑 ∧ 𝜓) ∧ ∀𝑥(𝜑 → 𝜓)) ↔ (∃𝑥𝜑 ∧ ∀𝑥(𝜑 → 𝜓))) | ||
Theorem | pm10.56 41877 | Theorem *10.56 in [WhiteheadRussell] p. 156. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ ((∀𝑥(𝜑 → 𝜓) ∧ ∃𝑥(𝜑 ∧ 𝜒)) → ∃𝑥(𝜓 ∧ 𝜒)) | ||
Theorem | pm10.57 41878 | Theorem *10.57 in [WhiteheadRussell] p. 156. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∀𝑥(𝜑 → (𝜓 ∨ 𝜒)) → (∀𝑥(𝜑 → 𝜓) ∨ ∃𝑥(𝜑 ∧ 𝜒))) | ||
Theorem | 2alanimi 41879 | Removes two universal quantifiers from a statement. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ ((∀𝑥∀𝑦𝜑 ∧ ∀𝑥∀𝑦𝜓) → ∀𝑥∀𝑦𝜒) | ||
Theorem | 2al2imi 41880 | Removes two universal quantifiers from a statement. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥∀𝑦𝜓 → ∀𝑥∀𝑦𝜒)) | ||
Theorem | pm11.11 41881 | Theorem *11.11 in [WhiteheadRussell] p. 159. (Contributed by Andrew Salmon, 17-Jun-2011.) |
⊢ 𝜑 ⇒ ⊢ ∀𝑧∀𝑤[𝑧 / 𝑥][𝑤 / 𝑦]𝜑 | ||
Theorem | pm11.12 41882* | Theorem *11.12 in [WhiteheadRussell] p. 159. (Contributed by Andrew Salmon, 17-Jun-2011.) |
⊢ (∀𝑥∀𝑦(𝜑 ∨ 𝜓) → (𝜑 ∨ ∀𝑥∀𝑦𝜓)) | ||
Theorem | 19.21vv 41883* | Compare Theorem *11.3 in [WhiteheadRussell] p. 161. Special case of theorem 19.21 of [Margaris] p. 90 with two quantifiers. See 19.21v 1943. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∀𝑥∀𝑦(𝜓 → 𝜑) ↔ (𝜓 → ∀𝑥∀𝑦𝜑)) | ||
Theorem | 2alim 41884 | Theorem *11.32 in [WhiteheadRussell] p. 162. Theorem 19.20 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → (∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑦𝜓)) | ||
Theorem | 2albi 41885 | Theorem *11.33 in [WhiteheadRussell] p. 162. Theorem 19.15 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∀𝑥∀𝑦(𝜑 ↔ 𝜓) → (∀𝑥∀𝑦𝜑 ↔ ∀𝑥∀𝑦𝜓)) | ||
Theorem | 2exim 41886 | Theorem *11.34 in [WhiteheadRussell] p. 162. Theorem 19.22 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → (∃𝑥∃𝑦𝜑 → ∃𝑥∃𝑦𝜓)) | ||
Theorem | 2exbi 41887 | Theorem *11.341 in [WhiteheadRussell] p. 162. Theorem 19.18 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∀𝑥∀𝑦(𝜑 ↔ 𝜓) → (∃𝑥∃𝑦𝜑 ↔ ∃𝑥∃𝑦𝜓)) | ||
Theorem | spsbce-2 41888 | Theorem *11.36 in [WhiteheadRussell] p. 162. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 → ∃𝑥∃𝑦𝜑) | ||
Theorem | 19.33-2 41889 | Theorem *11.421 in [WhiteheadRussell] p. 163. Theorem 19.33 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ ((∀𝑥∀𝑦𝜑 ∨ ∀𝑥∀𝑦𝜓) → ∀𝑥∀𝑦(𝜑 ∨ 𝜓)) | ||
Theorem | 19.36vv 41890* | Theorem *11.43 in [WhiteheadRussell] p. 163. Theorem 19.36 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 25-May-2011.) |
⊢ (∃𝑥∃𝑦(𝜑 → 𝜓) ↔ (∀𝑥∀𝑦𝜑 → 𝜓)) | ||
Theorem | 19.31vv 41891* | Theorem *11.44 in [WhiteheadRussell] p. 163. Theorem 19.31 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∀𝑥∀𝑦(𝜑 ∨ 𝜓) ↔ (∀𝑥∀𝑦𝜑 ∨ 𝜓)) | ||
Theorem | 19.37vv 41892* | Theorem *11.46 in [WhiteheadRussell] p. 164. Theorem 19.37 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∃𝑥∃𝑦(𝜓 → 𝜑) ↔ (𝜓 → ∃𝑥∃𝑦𝜑)) | ||
Theorem | 19.28vv 41893* | Theorem *11.47 in [WhiteheadRussell] p. 164. Theorem 19.28 of [Margaris] p. 90 with 2 quantifiers. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∀𝑥∀𝑦(𝜓 ∧ 𝜑) ↔ (𝜓 ∧ ∀𝑥∀𝑦𝜑)) | ||
Theorem | pm11.52 41894 | Theorem *11.52 in [WhiteheadRussell] p. 164. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ¬ ∀𝑥∀𝑦(𝜑 → ¬ 𝜓)) | ||
Theorem | aaanv 41895* | Theorem *11.56 in [WhiteheadRussell] p. 165. Special case of aaan 2332. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ ((∀𝑥𝜑 ∧ ∀𝑦𝜓) ↔ ∀𝑥∀𝑦(𝜑 ∧ 𝜓)) | ||
Theorem | pm11.57 41896* | Theorem *11.57 in [WhiteheadRussell] p. 165. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∀𝑥𝜑 ↔ ∀𝑥∀𝑦(𝜑 ∧ [𝑦 / 𝑥]𝜑)) | ||
Theorem | pm11.58 41897* | Theorem *11.58 in [WhiteheadRussell] p. 165. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∃𝑥𝜑 ↔ ∃𝑥∃𝑦(𝜑 ∧ [𝑦 / 𝑥]𝜑)) | ||
Theorem | pm11.59 41898* | Theorem *11.59 in [WhiteheadRussell] p. 165. (Contributed by Andrew Salmon, 25-May-2011.) |
⊢ (∀𝑥(𝜑 → 𝜓) → ∀𝑦∀𝑥((𝜑 ∧ [𝑦 / 𝑥]𝜑) → (𝜓 ∧ [𝑦 / 𝑥]𝜓))) | ||
Theorem | pm11.6 41899* | Theorem *11.6 in [WhiteheadRussell] p. 165. (Contributed by Andrew Salmon, 25-May-2011.) |
⊢ (∃𝑥(∃𝑦(𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ∃𝑦(∃𝑥(𝜑 ∧ 𝜒) ∧ 𝜓)) | ||
Theorem | pm11.61 41900* | Theorem *11.61 in [WhiteheadRussell] p. 166. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∃𝑦∀𝑥(𝜑 → 𝜓) → ∀𝑥(𝜑 → ∃𝑦𝜓)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |