HomeHome Metamath Proof Explorer
Theorem List (p. 419 of 466)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29289)
  Hilbert Space Explorer  Hilbert Space Explorer
(29290-30812)
  Users' Mathboxes  Users' Mathboxes
(30813-46532)
 

Theorem List for Metamath Proof Explorer - 41801-41900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremint-mul12d 41801 Second MultiplicationOne generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 = 𝐵)       (𝜑 → (1 · 𝐴) = 𝐵)
 
Theoremint-add01d 41802 First AdditionZero generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 = 𝐵)       (𝜑 → (𝐴 + 0) = 𝐵)
 
Theoremint-add02d 41803 Second AdditionZero generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 = 𝐵)       (𝜑 → (0 + 𝐴) = 𝐵)
 
Theoremint-sqgeq0d 41804 SquareGEQZero generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 = 𝐵)       (𝜑 → 0 ≤ (𝐴 · 𝐵))
 
Theoremint-eqprincd 41805 PrincipleOfEquality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐴 + 𝐶) = (𝐵 + 𝐷))
 
Theoremint-eqtransd 41806 EqualityTransitivity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐵 = 𝐶)       (𝜑𝐴 = 𝐶)
 
Theoremint-eqmvtd 41807 EquMoveTerm generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
(𝜑𝐶 ∈ ℝ)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑𝐴 = 𝐵)    &   (𝜑𝐴 = (𝐶 + 𝐷))       (𝜑𝐶 = (𝐵𝐷))
 
Theoremint-eqineqd 41808 EquivalenceImpliesDoubleInequality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
(𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 = 𝐵)       (𝜑𝐵𝐴)
 
Theoremint-ineqmvtd 41809 IneqMoveTerm generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
(𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑𝐵𝐴)    &   (𝜑𝐴 = (𝐶 + 𝐷))       (𝜑 → (𝐵𝐷) ≤ 𝐶)
 
Theoremint-ineq1stprincd 41810 FirstPrincipleOfInequality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐷 ∈ ℝ)    &   (𝜑𝐵𝐴)    &   (𝜑𝐷𝐶)       (𝜑 → (𝐵 + 𝐷) ≤ (𝐴 + 𝐶))
 
Theoremint-ineq2ndprincd 41811 SecondPrincipleOfInequality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐵𝐴)    &   (𝜑 → 0 ≤ 𝐶)       (𝜑 → (𝐵 · 𝐶) ≤ (𝐴 · 𝐶))
 
Theoremint-ineqtransd 41812 InequalityTransitivity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐵𝐴)    &   (𝜑𝐶𝐵)       (𝜑𝐶𝐴)
 
20.32.3  N-Digit Addition Proof Generator

This section formalizes theorems used in an n-digit addition proof generator.

Other theorems required: deccl 12461 addcomli 11176 00id 11159 addid1i 11171 addid2i 11172 eqid 2739 dec0h 12468 decadd 12500 decaddc 12501.

 
Theoremunitadd 41813 Theorem used in conjunction with decaddc 12501 to absorb carry when generating n-digit addition synthetic proofs. (Contributed by Stanislas Polu, 7-Apr-2020.)
(𝐴 + 𝐵) = 𝐹    &   (𝐶 + 1) = 𝐵    &   𝐴 ∈ ℕ0    &   𝐶 ∈ ℕ0       ((𝐴 + 𝐶) + 1) = 𝐹
 
20.32.4  AM-GM (for k = 2,3,4)
 
Theoremgsumws3 41814 Valuation of a length 3 word in a monoid. (Contributed by Stanislas Polu, 9-Sep-2020.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵𝑈𝐵))) → (𝐺 Σg ⟨“𝑆𝑇𝑈”⟩) = (𝑆 + (𝑇 + 𝑈)))
 
Theoremgsumws4 41815 Valuation of a length 4 word in a monoid. (Contributed by Stanislas Polu, 10-Sep-2020.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Mnd ∧ (𝑆𝐵 ∧ (𝑇𝐵 ∧ (𝑈𝐵𝑉𝐵)))) → (𝐺 Σg ⟨“𝑆𝑇𝑈𝑉”⟩) = (𝑆 + (𝑇 + (𝑈 + 𝑉))))
 
Theoremamgm2d 41816 Arithmetic-geometric mean inequality for 𝑛 = 2, derived from amgmlem 26148. (Contributed by Stanislas Polu, 8-Sep-2020.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)       (𝜑 → ((𝐴 · 𝐵)↑𝑐(1 / 2)) ≤ ((𝐴 + 𝐵) / 2))
 
Theoremamgm3d 41817 Arithmetic-geometric mean inequality for 𝑛 = 3. (Contributed by Stanislas Polu, 11-Sep-2020.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐶 ∈ ℝ+)       (𝜑 → ((𝐴 · (𝐵 · 𝐶))↑𝑐(1 / 3)) ≤ ((𝐴 + (𝐵 + 𝐶)) / 3))
 
Theoremamgm4d 41818 Arithmetic-geometric mean inequality for 𝑛 = 4. (Contributed by Stanislas Polu, 11-Sep-2020.)
(𝜑𝐴 ∈ ℝ+)    &   (𝜑𝐵 ∈ ℝ+)    &   (𝜑𝐶 ∈ ℝ+)    &   (𝜑𝐷 ∈ ℝ+)       (𝜑 → ((𝐴 · (𝐵 · (𝐶 · 𝐷)))↑𝑐(1 / 4)) ≤ ((𝐴 + (𝐵 + (𝐶 + 𝐷))) / 4))
 
20.33  Mathbox for Rohan Ridenour
 
20.33.1  Misc
 
TheoremspALT 41819 sp 2177 can be proven from the other classic axioms. (Contributed by Rohan Ridenour, 3-Nov-2023.) (Proof modification is discouraged.) Use sp 2177 instead. (New usage is discouraged.)
(∀𝑥𝜑𝜑)
 
Theoremelnelneqd 41820 Two classes are not equal if there is an element of one which is not an element of the other. (Contributed by Rohan Ridenour, 11-Aug-2023.)
(𝜑𝐶𝐴)    &   (𝜑 → ¬ 𝐶𝐵)       (𝜑 → ¬ 𝐴 = 𝐵)
 
Theoremelnelneq2d 41821 Two classes are not equal if one but not the other is an element of a given class. (Contributed by Rohan Ridenour, 12-Aug-2023.)
(𝜑𝐴𝐶)    &   (𝜑 → ¬ 𝐵𝐶)       (𝜑 → ¬ 𝐴 = 𝐵)
 
Theoremrr-spce 41822* Prove an existential. (Contributed by Rohan Ridenour, 12-Aug-2023.)
((𝜑𝑥 = 𝐴) → 𝜓)    &   (𝜑𝐴𝑉)       (𝜑 → ∃𝑥𝜓)
 
Theoremrexlimdvaacbv 41823* Unpack a restricted existential antecedent while changing the variable with implicit substitution. The equivalent of this theorem without the bound variable change is rexlimdvaa 3215. (Contributed by Rohan Ridenour, 3-Aug-2023.)
(𝑥 = 𝑦 → (𝜓𝜃))    &   ((𝜑 ∧ (𝑦𝐴𝜃)) → 𝜒)       (𝜑 → (∃𝑥𝐴 𝜓𝜒))
 
Theoremrexlimddvcbvw 41824* Unpack a restricted existential assumption while changing the variable with implicit substitution. Similar to rexlimdvaacbv 41823. The equivalent of this theorem without the bound variable change is rexlimddv 3221. Version of rexlimddvcbv 41825 with a disjoint variable condition, which does not require ax-13 2373. (Contributed by Rohan Ridenour, 3-Aug-2023.) (Revised by Gino Giotto, 2-Apr-2024.)
(𝜑 → ∃𝑥𝐴 𝜃)    &   ((𝜑 ∧ (𝑦𝐴𝜒)) → 𝜓)    &   (𝑥 = 𝑦 → (𝜃𝜒))       (𝜑𝜓)
 
Theoremrexlimddvcbv 41825* Unpack a restricted existential assumption while changing the variable with implicit substitution. Similar to rexlimdvaacbv 41823. The equivalent of this theorem without the bound variable change is rexlimddv 3221. Usage of this theorem is discouraged because it depends on ax-13 2373, see rexlimddvcbvw 41824 for a weaker version that does not require it. (Contributed by Rohan Ridenour, 3-Aug-2023.) (New usage is discouraged.)
(𝜑 → ∃𝑥𝐴 𝜃)    &   ((𝜑 ∧ (𝑦𝐴𝜒)) → 𝜓)    &   (𝑥 = 𝑦 → (𝜃𝜒))       (𝜑𝜓)
 
Theoremrr-elrnmpt3d 41826* Elementhood in an image set. (Contributed by Rohan Ridenour, 11-Aug-2023.)
𝐹 = (𝑥𝐴𝐵)    &   (𝜑𝐶𝐴)    &   (𝜑𝐷𝑉)    &   ((𝜑𝑥 = 𝐶) → 𝐵 = 𝐷)       (𝜑𝐷 ∈ ran 𝐹)
 
Theoremfinnzfsuppd 41827* If a function is zero outside of a finite set, it has finite support. (Contributed by Rohan Ridenour, 13-May-2024.)
(𝜑𝐹𝑉)    &   (𝜑𝐹 Fn 𝐷)    &   (𝜑𝑍𝑈)    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑥𝐷) → (𝑥𝐴 ∨ (𝐹𝑥) = 𝑍))       (𝜑𝐹 finSupp 𝑍)
 
Theoremrr-phpd 41828 Equivalent of php 9002 without negation. (Contributed by Rohan Ridenour, 3-Aug-2023.)
(𝜑𝐴 ∈ ω)    &   (𝜑𝐵𝐴)    &   (𝜑𝐴𝐵)       (𝜑𝐴 = 𝐵)
 
Theoremsuceqd 41829 Deduction associated with suceq 6335. (Contributed by Rohan Ridenour, 8-Aug-2023.)
(𝜑𝐴 = 𝐵)       (𝜑 → suc 𝐴 = suc 𝐵)
 
Theoremtfindsd 41830* Deduction associated with tfinds 7715. (Contributed by Rohan Ridenour, 8-Aug-2023.)
(𝑥 = ∅ → (𝜓𝜒))    &   (𝑥 = 𝑦 → (𝜓𝜃))    &   (𝑥 = suc 𝑦 → (𝜓𝜏))    &   (𝑥 = 𝐴 → (𝜓𝜂))    &   (𝜑𝜒)    &   ((𝜑𝑦 ∈ On ∧ 𝜃) → 𝜏)    &   ((𝜑 ∧ Lim 𝑥 ∧ ∀𝑦𝑥 𝜃) → 𝜓)    &   (𝜑𝐴 ∈ On)       (𝜑𝜂)
 
20.33.2  Monoid rings
 
Syntaxcmnring 41831 Extend class notation with the monoid ring function.
class MndRing
 
Definitiondf-mnring 41832* Define the monoid ring function. This takes a monoid 𝑀 and a ring 𝑅 and produces a free left module over 𝑅 with a product extending the monoid function on 𝑀. (Contributed by Rohan Ridenour, 13-May-2024.)
MndRing = (𝑟 ∈ V, 𝑚 ∈ V ↦ (𝑟 freeLMod (Base‘𝑚)) / 𝑣(𝑣 sSet ⟨(.r‘ndx), (𝑥 ∈ (Base‘𝑣), 𝑦 ∈ (Base‘𝑣) ↦ (𝑣 Σg (𝑎 ∈ (Base‘𝑚), 𝑏 ∈ (Base‘𝑚) ↦ (𝑖 ∈ (Base‘𝑚) ↦ if(𝑖 = (𝑎(+g𝑚)𝑏), ((𝑥𝑎)(.r𝑟)(𝑦𝑏)), (0g𝑟))))))⟩))
 
Theoremmnringvald 41833* Value of the monoid ring function. (Contributed by Rohan Ridenour, 14-May-2024.)
𝐹 = (𝑅 MndRing 𝑀)    &    · = (.r𝑅)    &    0 = (0g𝑅)    &   𝐴 = (Base‘𝑀)    &    + = (+g𝑀)    &   𝑉 = (𝑅 freeLMod 𝐴)    &   𝐵 = (Base‘𝑉)    &   (𝜑𝑅𝑈)    &   (𝜑𝑀𝑊)       (𝜑𝐹 = (𝑉 sSet ⟨(.r‘ndx), (𝑥𝐵, 𝑦𝐵 ↦ (𝑉 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 )))))⟩))
 
Theoremmnringnmulrd 41834 Components of a monoid ring other than its ring product match its underlying free module. (Contributed by Rohan Ridenour, 14-May-2024.) (Revised by AV, 1-Nov-2024.)
𝐹 = (𝑅 MndRing 𝑀)    &   𝐸 = Slot (𝐸‘ndx)    &   (𝐸‘ndx) ≠ (.r‘ndx)    &   𝐴 = (Base‘𝑀)    &   𝑉 = (𝑅 freeLMod 𝐴)    &   (𝜑𝑅𝑈)    &   (𝜑𝑀𝑊)       (𝜑 → (𝐸𝑉) = (𝐸𝐹))
 
TheoremmnringnmulrdOLD 41835 Obsolete version of mnringnmulrd 41834 as of 1-Nov-2024. Components of a monoid ring other than its ring product match its underlying free module. (Contributed by Rohan Ridenour, 14-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.)
𝐹 = (𝑅 MndRing 𝑀)    &   𝐸 = Slot 𝑁    &   𝑁 ∈ ℕ    &   𝑁 ≠ (.r‘ndx)    &   𝐴 = (Base‘𝑀)    &   𝑉 = (𝑅 freeLMod 𝐴)    &   (𝜑𝑅𝑈)    &   (𝜑𝑀𝑊)       (𝜑 → (𝐸𝑉) = (𝐸𝐹))
 
Theoremmnringbased 41836 The base set of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (Proof shortened by AV, 1-Nov-2024.)
𝐹 = (𝑅 MndRing 𝑀)    &   𝐴 = (Base‘𝑀)    &   𝑉 = (𝑅 freeLMod 𝐴)    &   𝐵 = (Base‘𝑉)    &   (𝜑𝑅𝑈)    &   (𝜑𝑀𝑊)       (𝜑𝐵 = (Base‘𝐹))
 
TheoremmnringbasedOLD 41837 Obsolete version of mnringnmulrd 41834 as of 1-Nov-2024. The base set of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.)
𝐹 = (𝑅 MndRing 𝑀)    &   𝐴 = (Base‘𝑀)    &   𝑉 = (𝑅 freeLMod 𝐴)    &   𝐵 = (Base‘𝑉)    &   (𝜑𝑅𝑈)    &   (𝜑𝑀𝑊)       (𝜑𝐵 = (Base‘𝐹))
 
Theoremmnringbaserd 41838 The base set of a monoid ring. Converse of mnringbased 41836. (Contributed by Rohan Ridenour, 14-May-2024.)
𝐹 = (𝑅 MndRing 𝑀)    &   𝐵 = (Base‘𝐹)    &   𝐴 = (Base‘𝑀)    &   𝑉 = (𝑅 freeLMod 𝐴)    &   (𝜑𝑅𝑈)    &   (𝜑𝑀𝑊)       (𝜑𝐵 = (Base‘𝑉))
 
Theoremmnringelbased 41839 Membership in the base set of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.)
𝐹 = (𝑅 MndRing 𝑀)    &   𝐵 = (Base‘𝐹)    &   𝐴 = (Base‘𝑀)    &   𝐶 = (Base‘𝑅)    &    0 = (0g𝑅)    &   (𝜑𝑅𝑈)    &   (𝜑𝑀𝑊)       (𝜑 → (𝑋𝐵 ↔ (𝑋 ∈ (𝐶m 𝐴) ∧ 𝑋 finSupp 0 )))
 
Theoremmnringbasefd 41840 Elements of a monoid ring are functions. (Contributed by Rohan Ridenour, 14-May-2024.)
𝐹 = (𝑅 MndRing 𝑀)    &   𝐵 = (Base‘𝐹)    &   𝐴 = (Base‘𝑀)    &   𝐶 = (Base‘𝑅)    &   (𝜑𝑅𝑈)    &   (𝜑𝑀𝑊)    &   (𝜑𝑋𝐵)       (𝜑𝑋:𝐴𝐶)
 
Theoremmnringbasefsuppd 41841 Elements of a monoid ring are finitely supported. (Contributed by Rohan Ridenour, 14-May-2024.)
𝐹 = (𝑅 MndRing 𝑀)    &   𝐵 = (Base‘𝐹)    &    0 = (0g𝑅)    &   (𝜑𝑅𝑈)    &   (𝜑𝑀𝑊)    &   (𝜑𝑋𝐵)       (𝜑𝑋 finSupp 0 )
 
Theoremmnringaddgd 41842 The additive operation of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (Proof shortened by AV, 1-Nov-2024.)
𝐹 = (𝑅 MndRing 𝑀)    &   𝐴 = (Base‘𝑀)    &   𝑉 = (𝑅 freeLMod 𝐴)    &   (𝜑𝑅𝑈)    &   (𝜑𝑀𝑊)       (𝜑 → (+g𝑉) = (+g𝐹))
 
TheoremmnringaddgdOLD 41843 Obsolete version of mnringaddgd 41842 as of 1-Nov-2024. The additive operation of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.)
𝐹 = (𝑅 MndRing 𝑀)    &   𝐴 = (Base‘𝑀)    &   𝑉 = (𝑅 freeLMod 𝐴)    &   (𝜑𝑅𝑈)    &   (𝜑𝑀𝑊)       (𝜑 → (+g𝑉) = (+g𝐹))
 
Theoremmnring0gd 41844 The additive identity of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.)
𝐹 = (𝑅 MndRing 𝑀)    &   𝐴 = (Base‘𝑀)    &   𝑉 = (𝑅 freeLMod 𝐴)    &   (𝜑𝑅𝑈)    &   (𝜑𝑀𝑊)       (𝜑 → (0g𝑉) = (0g𝐹))
 
Theoremmnring0g2d 41845 The additive identity of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.)
𝐹 = (𝑅 MndRing 𝑀)    &    0 = (0g𝑅)    &   𝐴 = (Base‘𝑀)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑀𝑊)       (𝜑 → (𝐴 × { 0 }) = (0g𝐹))
 
Theoremmnringmulrd 41846* The ring product of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.)
𝐹 = (𝑅 MndRing 𝑀)    &   𝐵 = (Base‘𝐹)    &    · = (.r𝑅)    &    0 = (0g𝑅)    &   𝐴 = (Base‘𝑀)    &    + = (+g𝑀)    &   (𝜑𝑅𝑈)    &   (𝜑𝑀𝑊)       (𝜑 → (𝑥𝐵, 𝑦𝐵 ↦ (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥𝑎) · (𝑦𝑏)), 0 ))))) = (.r𝐹))
 
Theoremmnringscad 41847 The scalar ring of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (Proof shortened by AV, 1-Nov-2024.)
𝐹 = (𝑅 MndRing 𝑀)    &   (𝜑𝑅𝑈)    &   (𝜑𝑀𝑊)       (𝜑𝑅 = (Scalar‘𝐹))
 
TheoremmnringscadOLD 41848 Obsolete version of mnringscad 41847 as of 1-Nov-2024. The scalar ring of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.)
𝐹 = (𝑅 MndRing 𝑀)    &   (𝜑𝑅𝑈)    &   (𝜑𝑀𝑊)       (𝜑𝑅 = (Scalar‘𝐹))
 
Theoremmnringvscad 41849 The scalar product of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (Proof shortened by AV, 1-Nov-2024.)
𝐹 = (𝑅 MndRing 𝑀)    &   𝐵 = (Base‘𝑀)    &   𝑉 = (𝑅 freeLMod 𝐵)    &   (𝜑𝑅𝑈)    &   (𝜑𝑀𝑊)       (𝜑 → ( ·𝑠𝑉) = ( ·𝑠𝐹))
 
TheoremmnringvscadOLD 41850 Obsolete version of mnringvscad 41849 as of 1-Nov-2024. The scalar product of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.)
𝐹 = (𝑅 MndRing 𝑀)    &   𝐵 = (Base‘𝑀)    &   𝑉 = (𝑅 freeLMod 𝐵)    &   (𝜑𝑅𝑈)    &   (𝜑𝑀𝑊)       (𝜑 → ( ·𝑠𝑉) = ( ·𝑠𝐹))
 
Theoremmnringlmodd 41851 Monoid rings are left modules. (Contributed by Rohan Ridenour, 14-May-2024.)
𝐹 = (𝑅 MndRing 𝑀)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑀𝑈)       (𝜑𝐹 ∈ LMod)
 
Theoremmnringmulrvald 41852* Value of multiplication in a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.)
𝐹 = (𝑅 MndRing 𝑀)    &   𝐵 = (Base‘𝐹)    &    = (.r𝑅)    &    𝟎 = (0g𝑅)    &   𝐴 = (Base‘𝑀)    &    + = (+g𝑀)    &    · = (.r𝐹)    &   (𝜑𝑅𝑈)    &   (𝜑𝑀𝑊)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋 · 𝑌) = (𝐹 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋𝑎) (𝑌𝑏)), 𝟎 )))))
 
Theoremmnringmulrcld 41853 Monoid rings are closed under multiplication. (Contributed by Rohan Ridenour, 14-May-2024.)
𝐹 = (𝑅 MndRing 𝑀)    &   𝐵 = (Base‘𝐹)    &   𝐴 = (Base‘𝑀)    &    · = (.r𝐹)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑀𝑈)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋 · 𝑌) ∈ 𝐵)
 
20.33.3  Shorter primitive equivalent of ax-groth
 
20.33.3.1  Grothendieck universes are closed under collection
 
Theoremgru0eld 41854 A nonempty Grothendieck universe contains the empty set. (Contributed by Rohan Ridenour, 11-Aug-2023.)
(𝜑𝐺 ∈ Univ)    &   (𝜑𝐴𝐺)       (𝜑 → ∅ ∈ 𝐺)
 
Theoremgrusucd 41855 Grothendieck universes are closed under ordinal successor. (Contributed by Rohan Ridenour, 9-Aug-2023.)
(𝜑𝐺 ∈ Univ)    &   (𝜑𝐴𝐺)       (𝜑 → suc 𝐴𝐺)
 
Theoremr1rankcld 41856 Any rank of the cumulative hierarchy is closed under the rank function. (Contributed by Rohan Ridenour, 11-Aug-2023.)
(𝜑𝐴 ∈ (𝑅1𝑅))       (𝜑 → (rank‘𝐴) ∈ (𝑅1𝑅))
 
Theoremgrur1cld 41857 Grothendieck universes are closed under the cumulative hierarchy function. (Contributed by Rohan Ridenour, 8-Aug-2023.)
(𝜑𝐺 ∈ Univ)    &   (𝜑𝐴𝐺)       (𝜑 → (𝑅1𝐴) ∈ 𝐺)
 
Theoremgrurankcld 41858 Grothendieck universes are closed under the rank function. (Contributed by Rohan Ridenour, 9-Aug-2023.)
(𝜑𝐺 ∈ Univ)    &   (𝜑𝐴𝐺)       (𝜑 → (rank‘𝐴) ∈ 𝐺)
 
Theoremgrurankrcld 41859 If a Grothendieck universe contains a set's rank, it contains that set. (Contributed by Rohan Ridenour, 9-Aug-2023.)
(𝜑𝐺 ∈ Univ)    &   (𝜑 → (rank‘𝐴) ∈ 𝐺)    &   (𝜑𝐴𝑉)       (𝜑𝐴𝐺)
 
Syntaxcscott 41860 Extend class notation with the Scott's trick operation.
class Scott 𝐴
 
Definitiondf-scott 41861* Define the Scott operation. This operation constructs a subset of the input class which is nonempty whenever its input is using Scott's trick. (Contributed by Rohan Ridenour, 9-Aug-2023.)
Scott 𝐴 = {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)}
 
Theoremscotteqd 41862 Equality theorem for the Scott operation. (Contributed by Rohan Ridenour, 9-Aug-2023.)
(𝜑𝐴 = 𝐵)       (𝜑 → Scott 𝐴 = Scott 𝐵)
 
Theoremscotteq 41863 Closed form of scotteqd 41862. (Contributed by Rohan Ridenour, 9-Aug-2023.)
(𝐴 = 𝐵 → Scott 𝐴 = Scott 𝐵)
 
Theoremnfscott 41864 Bound-variable hypothesis builder for the Scott operation. (Contributed by Rohan Ridenour, 11-Aug-2023.)
𝑥𝐴       𝑥Scott 𝐴
 
Theoremscottabf 41865* Value of the Scott operation at a class abstraction. Variant of scottab 41866 with a nonfreeness hypothesis instead of a disjoint variable condition. (Contributed by Rohan Ridenour, 14-Aug-2023.)
𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       Scott {𝑥𝜑} = {𝑥 ∣ (𝜑 ∧ ∀𝑦(𝜓 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
 
Theoremscottab 41866* Value of the Scott operation at a class abstraction. (Contributed by Rohan Ridenour, 14-Aug-2023.)
(𝑥 = 𝑦 → (𝜑𝜓))       Scott {𝑥𝜑} = {𝑥 ∣ (𝜑 ∧ ∀𝑦(𝜓 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
 
Theoremscottabes 41867* Value of the Scott operation at a class abstraction. Variant of scottab 41866 using explicit substitution. (Contributed by Rohan Ridenour, 14-Aug-2023.)
Scott {𝑥𝜑} = {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
 
Theoremscottss 41868 Scott's trick produces a subset of the input class. (Contributed by Rohan Ridenour, 11-Aug-2023.)
Scott 𝐴𝐴
 
Theoremelscottab 41869* An element of the output of the Scott operation applied to a class abstraction satisfies the class abstraction's predicate. (Contributed by Rohan Ridenour, 14-Aug-2023.)
(𝑥 = 𝑦 → (𝜑𝜓))       (𝑦 ∈ Scott {𝑥𝜑} → 𝜓)
 
Theoremscottex2 41870 scottex 9652 expressed using Scott. (Contributed by Rohan Ridenour, 9-Aug-2023.)
Scott 𝐴 ∈ V
 
Theoremscotteld 41871* The Scott operation sends inhabited classes to inhabited sets. (Contributed by Rohan Ridenour, 11-Aug-2023.)
(𝜑 → ∃𝑥 𝑥𝐴)       (𝜑 → ∃𝑥 𝑥 ∈ Scott 𝐴)
 
Theoremscottelrankd 41872 Property of a Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023.)
(𝜑𝐵 ∈ Scott 𝐴)    &   (𝜑𝐶 ∈ Scott 𝐴)       (𝜑 → (rank‘𝐵) ⊆ (rank‘𝐶))
 
Theoremscottrankd 41873 Rank of a nonempty Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023.)
(𝜑𝐵 ∈ Scott 𝐴)       (𝜑 → (rank‘Scott 𝐴) = suc (rank‘𝐵))
 
Theoremgruscottcld 41874 If a Grothendieck universe contains an element of a Scott's trick set, it contains the Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023.)
(𝜑𝐺 ∈ Univ)    &   (𝜑𝐵𝐺)    &   (𝜑𝐵 ∈ Scott 𝐴)       (𝜑 → Scott 𝐴𝐺)
 
Syntaxccoll 41875 Extend class notation with the collection operation.
class (𝐹 Coll 𝐴)
 
Definitiondf-coll 41876* Define the collection operation. This is similar to the image set operation , but it uses Scott's trick to ensure the output is always a set. (Contributed by Rohan Ridenour, 11-Aug-2023.)
(𝐹 Coll 𝐴) = 𝑥𝐴 Scott (𝐹 “ {𝑥})
 
Theoremdfcoll2 41877* Alternate definition of the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.)
(𝐹 Coll 𝐴) = 𝑥𝐴 Scott {𝑦𝑥𝐹𝑦}
 
Theoremcolleq12d 41878 Equality theorem for the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.)
(𝜑𝐹 = 𝐺)    &   (𝜑𝐴 = 𝐵)       (𝜑 → (𝐹 Coll 𝐴) = (𝐺 Coll 𝐵))
 
Theoremcolleq1 41879 Equality theorem for the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.)
(𝐹 = 𝐺 → (𝐹 Coll 𝐴) = (𝐺 Coll 𝐴))
 
Theoremcolleq2 41880 Equality theorem for the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.)
(𝐴 = 𝐵 → (𝐹 Coll 𝐴) = (𝐹 Coll 𝐵))
 
Theoremnfcoll 41881 Bound-variable hypothesis builder for the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.)
𝑥𝐹    &   𝑥𝐴       𝑥(𝐹 Coll 𝐴)
 
Theoremcollexd 41882 The output of the collection operation is a set if the second input is. (Contributed by Rohan Ridenour, 11-Aug-2023.)
(𝜑𝐴𝑉)       (𝜑 → (𝐹 Coll 𝐴) ∈ V)
 
Theoremcpcolld 41883* Property of the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.)
(𝜑𝑥𝐴)    &   (𝜑𝑥𝐹𝑦)       (𝜑 → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦)
 
Theoremcpcoll2d 41884* cpcolld 41883 with an extra existential quantifier. (Contributed by Rohan Ridenour, 12-Aug-2023.)
(𝜑𝑥𝐴)    &   (𝜑 → ∃𝑦 𝑥𝐹𝑦)       (𝜑 → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦)
 
Theoremgrucollcld 41885 A Grothendieck universe contains the output of a collection operation whenever its left input is a relation on the universe, and its right input is in the universe. (Contributed by Rohan Ridenour, 11-Aug-2023.)
(𝜑𝐺 ∈ Univ)    &   (𝜑𝐹 ⊆ (𝐺 × 𝐺))    &   (𝜑𝐴𝐺)       (𝜑 → (𝐹 Coll 𝐴) ∈ 𝐺)
 
20.33.3.2  Minimal universes
 
Theoremismnu 41886* The hypothesis of this theorem defines a class M of sets that we temporarily call "minimal universes", and which will turn out in grumnueq 41912 to be exactly Grothendicek universes. Minimal universes are sets which satisfy the predicate on 𝑦 in rr-groth 41924, except for the 𝑥𝑦 clause.

A minimal universe is closed under subsets (mnussd 41888), powersets (mnupwd 41892), and an operation which is similar to a combination of collection and union (mnuop3d 41896), from which closure under pairing (mnuprd 41901), unions (mnuunid 41902), and function ranges (mnurnd 41908) can be deduced, from which equivalence with Grothendieck universes (grumnueq 41912) can be deduced. (Contributed by Rohan Ridenour, 13-Aug-2023.)

𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}       (𝑈𝑉 → (𝑈𝑀 ↔ ∀𝑧𝑈 (𝒫 𝑧𝑈 ∧ ∀𝑓𝑤𝑈 (𝒫 𝑧𝑤 ∧ ∀𝑖𝑧 (∃𝑣𝑈 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤))))))
 
Theoremmnuop123d 41887* Operations of a minimal universe. (Contributed by Rohan Ridenour, 13-Aug-2023.)
𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}    &   (𝜑𝑈𝑀)    &   (𝜑𝐴𝑈)       (𝜑 → (𝒫 𝐴𝑈 ∧ ∀𝑓𝑤𝑈 (𝒫 𝐴𝑤 ∧ ∀𝑖𝐴 (∃𝑣𝑈 (𝑖𝑣𝑣𝑓) → ∃𝑢𝑓 (𝑖𝑢 𝑢𝑤)))))
 
Theoremmnussd 41888* Minimal universes are closed under subsets. (Contributed by Rohan Ridenour, 13-Aug-2023.)
𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}    &   (𝜑𝑈𝑀)    &   (𝜑𝐴𝑈)    &   (𝜑𝐵𝐴)       (𝜑𝐵𝑈)
 
Theoremmnuss2d 41889* mnussd 41888 with arguments provided with an existential quantifier. (Contributed by Rohan Ridenour, 13-Aug-2023.)
𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}    &   (𝜑𝑈𝑀)    &   (𝜑 → ∃𝑥𝑈 𝐴𝑥)       (𝜑𝐴𝑈)
 
Theoremmnu0eld 41890* A nonempty minimal universe contains the empty set. (Contributed by Rohan Ridenour, 13-Aug-2023.)
𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}    &   (𝜑𝑈𝑀)    &   (𝜑𝐴𝑈)       (𝜑 → ∅ ∈ 𝑈)
 
Theoremmnuop23d 41891* Second and third operations of a minimal universe. (Contributed by Rohan Ridenour, 13-Aug-2023.)
𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}    &   (𝜑𝑈𝑀)    &   (𝜑𝐴𝑈)    &   (𝜑𝐹𝑉)       (𝜑 → ∃𝑤𝑈 (𝒫 𝐴𝑤 ∧ ∀𝑖𝐴 (∃𝑣𝑈 (𝑖𝑣𝑣𝐹) → ∃𝑢𝐹 (𝑖𝑢 𝑢𝑤))))
 
Theoremmnupwd 41892* Minimal universes are closed under powersets. (Contributed by Rohan Ridenour, 13-Aug-2023.)
𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}    &   (𝜑𝑈𝑀)    &   (𝜑𝐴𝑈)       (𝜑 → 𝒫 𝐴𝑈)
 
Theoremmnusnd 41893* Minimal universes are closed under singletons. (Contributed by Rohan Ridenour, 13-Aug-2023.)
𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}    &   (𝜑𝑈𝑀)    &   (𝜑𝐴𝑈)       (𝜑 → {𝐴} ∈ 𝑈)
 
Theoremmnuprssd 41894* A minimal universe contains pairs of subsets of an element of the universe. (Contributed by Rohan Ridenour, 13-Aug-2023.)
𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}    &   (𝜑𝑈𝑀)    &   (𝜑𝐶𝑈)    &   (𝜑𝐴𝐶)    &   (𝜑𝐵𝐶)       (𝜑 → {𝐴, 𝐵} ∈ 𝑈)
 
Theoremmnuprss2d 41895* Special case of mnuprssd 41894. (Contributed by Rohan Ridenour, 13-Aug-2023.)
𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}    &   (𝜑𝑈𝑀)    &   (𝜑𝐶𝑈)    &   𝐴𝐶    &   𝐵𝐶       (𝜑 → {𝐴, 𝐵} ∈ 𝑈)
 
Theoremmnuop3d 41896* Third operation of a minimal universe. (Contributed by Rohan Ridenour, 13-Aug-2023.)
𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}    &   (𝜑𝑈𝑀)    &   (𝜑𝐴𝑈)    &   (𝜑𝐹𝑈)       (𝜑 → ∃𝑤𝑈𝑖𝐴 (∃𝑣𝐹 𝑖𝑣 → ∃𝑢𝐹 (𝑖𝑢 𝑢𝑤)))
 
Theoremmnuprdlem1 41897* Lemma for mnuprd 41901. (Contributed by Rohan Ridenour, 11-Aug-2023.)
𝐹 = {{∅, {𝐴}}, {{∅}, {𝐵}}}    &   (𝜑𝐴𝑈)    &   (𝜑𝐵𝑈)    &   (𝜑 → ∀𝑖 ∈ {∅, {∅}}∃𝑢𝐹 (𝑖𝑢 𝑢𝑤))       (𝜑𝐴𝑤)
 
Theoremmnuprdlem2 41898* Lemma for mnuprd 41901. (Contributed by Rohan Ridenour, 11-Aug-2023.)
𝐹 = {{∅, {𝐴}}, {{∅}, {𝐵}}}    &   (𝜑𝐵𝑈)    &   (𝜑 → ¬ 𝐴 = ∅)    &   (𝜑 → ∀𝑖 ∈ {∅, {∅}}∃𝑢𝐹 (𝑖𝑢 𝑢𝑤))       (𝜑𝐵𝑤)
 
Theoremmnuprdlem3 41899* Lemma for mnuprd 41901. (Contributed by Rohan Ridenour, 11-Aug-2023.)
𝐹 = {{∅, {𝐴}}, {{∅}, {𝐵}}}    &   𝑖𝜑       (𝜑 → ∀𝑖 ∈ {∅, {∅}}∃𝑣𝐹 𝑖𝑣)
 
Theoremmnuprdlem4 41900* Lemma for mnuprd 41901. General case. (Contributed by Rohan Ridenour, 13-Aug-2023.)
𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}    &   𝐹 = {{∅, {𝐴}}, {{∅}, {𝐵}}}    &   (𝜑𝑈𝑀)    &   (𝜑𝐴𝑈)    &   (𝜑𝐵𝑈)    &   (𝜑 → ¬ 𝐴 = ∅)       (𝜑 → {𝐴, 𝐵} ∈ 𝑈)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46532
  Copyright terms: Public domain < Previous  Next >