![]() |
Metamath
Proof Explorer Theorem List (p. 419 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | hdmapeq0 41801 | Part of proof of part 12 in [Baer] p. 49 line 3. (Contributed by NM, 22-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑆‘𝑇) = 𝑄 ↔ 𝑇 = 0 )) | ||
Theorem | hdmapnzcl 41802 | Nonzero vector closure of map from vectors to functionals with closed kernels. (Contributed by NM, 27-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝑆‘𝑇) ∈ (𝐷 ∖ {𝑄})) | ||
Theorem | hdmapneg 41803 | Part of proof of part 12 in [Baer] p. 49 line 4. The sigma map of a negative is the negative of the sigma map. (Contributed by NM, 24-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑀 = (invg‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐼 = (invg‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑇 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑆‘(𝑀‘𝑇)) = (𝐼‘(𝑆‘𝑇))) | ||
Theorem | hdmapsub 41804 | Part of proof of part 12 in [Baer] p. 49 line 5, (a-b)S = aS-bS in their notation (S = sigma). (Contributed by NM, 26-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝑁 = (-g‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑆‘(𝑋 − 𝑌)) = ((𝑆‘𝑋)𝑁(𝑆‘𝑌))) | ||
Theorem | hdmap11 41805 | Part of proof of part 12 in [Baer] p. 49 line 4, aS=bS iff a=b in their notation (S = sigma). The sigma map is one-to-one. (Contributed by NM, 26-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑆‘𝑋) = (𝑆‘𝑌) ↔ 𝑋 = 𝑌)) | ||
Theorem | hdmaprnlem1N 41806 | Part of proof of part 12 in [Baer] p. 49 line 10, Gu' ≠ Gs. Our (𝑁‘{𝑣}) is Baer's T. (Contributed by NM, 26-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) & ⊢ (𝜑 → 𝑣 ∈ 𝑉) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) & ⊢ (𝜑 → 𝑢 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) ⇒ ⊢ (𝜑 → (𝐿‘{(𝑆‘𝑢)}) ≠ (𝐿‘{𝑠})) | ||
Theorem | hdmaprnlem3N 41807 | Part of proof of part 12 in [Baer] p. 49 line 15, T ≠ P. Our (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) is Baer's P, where P* = G(u'+s). (Contributed by NM, 27-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) & ⊢ (𝜑 → 𝑣 ∈ 𝑉) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) & ⊢ (𝜑 → 𝑢 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 0 = (0g‘𝑈) & ⊢ ✚ = (+g‘𝐶) ⇒ ⊢ (𝜑 → (𝑁‘{𝑣}) ≠ (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}))) | ||
Theorem | hdmaprnlem3uN 41808 | Part of proof of part 12 in [Baer] p. 49. (Contributed by NM, 29-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) & ⊢ (𝜑 → 𝑣 ∈ 𝑉) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) & ⊢ (𝜑 → 𝑢 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 0 = (0g‘𝑈) & ⊢ ✚ = (+g‘𝐶) ⇒ ⊢ (𝜑 → (𝑁‘{𝑢}) ≠ (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}))) | ||
Theorem | hdmaprnlem4tN 41809 | Lemma for hdmaprnN 41821. TODO: This lemma doesn't quite pay for itself even though used six times. Maybe prove this directly instead. (Contributed by NM, 27-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) & ⊢ (𝜑 → 𝑣 ∈ 𝑉) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) & ⊢ (𝜑 → 𝑢 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 0 = (0g‘𝑈) & ⊢ ✚ = (+g‘𝐶) & ⊢ (𝜑 → 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) ⇒ ⊢ (𝜑 → 𝑡 ∈ 𝑉) | ||
Theorem | hdmaprnlem4N 41810 | Part of proof of part 12 in [Baer] p. 49 line 19. (T* =) (Ft)* = Gs. (Contributed by NM, 27-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) & ⊢ (𝜑 → 𝑣 ∈ 𝑉) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) & ⊢ (𝜑 → 𝑢 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 0 = (0g‘𝑈) & ⊢ ✚ = (+g‘𝐶) & ⊢ (𝜑 → 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑡})) = (𝐿‘{𝑠})) | ||
Theorem | hdmaprnlem6N 41811 | Part of proof of part 12 in [Baer] p. 49 line 18, G(u'+s) = G(u'+t). (Contributed by NM, 27-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) & ⊢ (𝜑 → 𝑣 ∈ 𝑉) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) & ⊢ (𝜑 → 𝑢 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 0 = (0g‘𝑈) & ⊢ ✚ = (+g‘𝐶) & ⊢ (𝜑 → 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) & ⊢ + = (+g‘𝑈) & ⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)}))) ⇒ ⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) = (𝐿‘{((𝑆‘𝑢) ✚ (𝑆‘𝑡))})) | ||
Theorem | hdmaprnlem7N 41812 | Part of proof of part 12 in [Baer] p. 49 line 19, s-St ∈ G(u'+s) = P*. (Contributed by NM, 27-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) & ⊢ (𝜑 → 𝑣 ∈ 𝑉) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) & ⊢ (𝜑 → 𝑢 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 0 = (0g‘𝑈) & ⊢ ✚ = (+g‘𝐶) & ⊢ (𝜑 → 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) & ⊢ + = (+g‘𝑈) & ⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)}))) ⇒ ⊢ (𝜑 → (𝑠(-g‘𝐶)(𝑆‘𝑡)) ∈ (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) | ||
Theorem | hdmaprnlem8N 41813 | Part of proof of part 12 in [Baer] p. 49 line 19, s-St ∈ (Ft)* = T*. (Contributed by NM, 27-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) & ⊢ (𝜑 → 𝑣 ∈ 𝑉) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) & ⊢ (𝜑 → 𝑢 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 0 = (0g‘𝑈) & ⊢ ✚ = (+g‘𝐶) & ⊢ (𝜑 → 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) & ⊢ + = (+g‘𝑈) & ⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)}))) ⇒ ⊢ (𝜑 → (𝑠(-g‘𝐶)(𝑆‘𝑡)) ∈ (𝑀‘(𝑁‘{𝑡}))) | ||
Theorem | hdmaprnlem9N 41814 | Part of proof of part 12 in [Baer] p. 49 line 21, s=S(t). TODO: we seem to be going back and forth with mapd11 41596 and mapdcnv11N 41616. Use better hypotheses and/or theorems? (Contributed by NM, 27-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) & ⊢ (𝜑 → 𝑣 ∈ 𝑉) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) & ⊢ (𝜑 → 𝑢 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 0 = (0g‘𝑈) & ⊢ ✚ = (+g‘𝐶) & ⊢ (𝜑 → 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) & ⊢ + = (+g‘𝑈) & ⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)}))) ⇒ ⊢ (𝜑 → 𝑠 = (𝑆‘𝑡)) | ||
Theorem | hdmaprnlem3eN 41815* | Lemma for hdmaprnN 41821. (Contributed by NM, 29-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) & ⊢ (𝜑 → 𝑣 ∈ 𝑉) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) & ⊢ (𝜑 → 𝑢 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 0 = (0g‘𝑈) & ⊢ ✚ = (+g‘𝐶) & ⊢ + = (+g‘𝑈) ⇒ ⊢ (𝜑 → ∃𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)}))) | ||
Theorem | hdmaprnlem10N 41816* | Lemma for hdmaprnN 41821. Show 𝑠 is in the range of 𝑆. (Contributed by NM, 29-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) & ⊢ (𝜑 → 𝑣 ∈ 𝑉) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) & ⊢ (𝜑 → 𝑢 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 0 = (0g‘𝑈) & ⊢ ✚ = (+g‘𝐶) & ⊢ + = (+g‘𝑈) ⇒ ⊢ (𝜑 → ∃𝑡 ∈ 𝑉 (𝑆‘𝑡) = 𝑠) | ||
Theorem | hdmaprnlem11N 41817* | Lemma for hdmaprnN 41821. Show 𝑠 is in the range of 𝑆. (Contributed by NM, 29-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) & ⊢ (𝜑 → 𝑣 ∈ 𝑉) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) & ⊢ (𝜑 → 𝑢 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 0 = (0g‘𝑈) & ⊢ ✚ = (+g‘𝐶) & ⊢ + = (+g‘𝑈) ⇒ ⊢ (𝜑 → 𝑠 ∈ ran 𝑆) | ||
Theorem | hdmaprnlem15N 41818* | Lemma for hdmaprnN 41821. Eliminate 𝑢. (Contributed by NM, 30-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 0 = (0g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ { 0 })) & ⊢ (𝜑 → 𝑣 ∈ 𝑉) & ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) ⇒ ⊢ (𝜑 → 𝑠 ∈ ran 𝑆) | ||
Theorem | hdmaprnlem16N 41819 | Lemma for hdmaprnN 41821. Eliminate 𝑣. (Contributed by NM, 30-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 0 = (0g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ { 0 })) ⇒ ⊢ (𝜑 → 𝑠 ∈ ran 𝑆) | ||
Theorem | hdmaprnlem17N 41820 | Lemma for hdmaprnN 41821. Include zero. (Contributed by NM, 30-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 0 = (0g‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑠 ∈ 𝐷) ⇒ ⊢ (𝜑 → 𝑠 ∈ ran 𝑆) | ||
Theorem | hdmaprnN 41821 | Part of proof of part 12 in [Baer] p. 49 line 21, As=B. (Contributed by NM, 30-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → ran 𝑆 = 𝐷) | ||
Theorem | hdmapf1oN 41822 | Part 12 in [Baer] p. 49. The map from vectors to functionals with closed kernels maps one-to-one onto. Combined with hdmapadd 41800, this shows the map is an automorphism from the additive group of vectors to the additive group of functionals with closed kernels. (Contributed by NM, 30-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝑆:𝑉–1-1-onto→𝐷) | ||
Theorem | hdmap14lem1a 41823 | Prior to part 14 in [Baer] p. 49, line 25. (Contributed by NM, 31-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝐹 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝐿‘{(𝑆‘𝑋)}) = (𝐿‘{(𝑆‘(𝐹 · 𝑋))})) | ||
Theorem | hdmap14lem2a 41824* | Prior to part 14 in [Baer] p. 49, line 25. TODO: fix to include 𝐹 = 0 so it can be used in hdmap14lem10 41834. (Contributed by NM, 31-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) ⇒ ⊢ (𝜑 → ∃𝑔 ∈ 𝐴 (𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋))) | ||
Theorem | hdmap14lem1 41825 | Prior to part 14 in [Baer] p. 49, line 25. (Contributed by NM, 31-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑍 = (0g‘𝑅) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ 𝑄 = (0g‘𝑃) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐹 ∈ (𝐵 ∖ {𝑍})) ⇒ ⊢ (𝜑 → (𝐿‘{(𝑆‘𝑋)}) = (𝐿‘{(𝑆‘(𝐹 · 𝑋))})) | ||
Theorem | hdmap14lem2N 41826* | Prior to part 14 in [Baer] p. 49, line 25. TODO: fix to include 𝐹 = 𝑍 so it can be used in hdmap14lem10 41834. (Contributed by NM, 31-May-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑍 = (0g‘𝑅) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ 𝑄 = (0g‘𝑃) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐹 ∈ (𝐵 ∖ {𝑍})) ⇒ ⊢ (𝜑 → ∃𝑔 ∈ (𝐴 ∖ {𝑄})(𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋))) | ||
Theorem | hdmap14lem3 41827* | Prior to part 14 in [Baer] p. 49, line 26. (Contributed by NM, 31-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑍 = (0g‘𝑅) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ 𝑄 = (0g‘𝑃) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐹 ∈ (𝐵 ∖ {𝑍})) ⇒ ⊢ (𝜑 → ∃!𝑔 ∈ (𝐴 ∖ {𝑄})(𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋))) | ||
Theorem | hdmap14lem4a 41828* | Simplify (𝐴 ∖ {𝑄}) in hdmap14lem3 41827 to provide a slightly simpler definition later. (Contributed by NM, 31-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑍 = (0g‘𝑅) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ 𝑄 = (0g‘𝑃) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐹 ∈ (𝐵 ∖ {𝑍})) ⇒ ⊢ (𝜑 → (∃!𝑔 ∈ (𝐴 ∖ {𝑄})(𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋)) ↔ ∃!𝑔 ∈ 𝐴 (𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋)))) | ||
Theorem | hdmap14lem4 41829* | Simplify (𝐴 ∖ {𝑄}) in hdmap14lem3 41827 to provide a slightly simpler definition later. TODO: Use hdmap14lem4a 41828 if that one is also used directly elsewhere. Otherwise, merge hdmap14lem4a 41828 into this one. (Contributed by NM, 31-May-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑍 = (0g‘𝑅) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ 𝑄 = (0g‘𝑃) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐹 ∈ (𝐵 ∖ {𝑍})) ⇒ ⊢ (𝜑 → ∃!𝑔 ∈ 𝐴 (𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋))) | ||
Theorem | hdmap14lem6 41830* | Case where 𝐹 is zero. (Contributed by NM, 1-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑍 = (0g‘𝑅) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝐿 = (LSpan‘𝐶) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ 𝑄 = (0g‘𝑃) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐹 = 𝑍) ⇒ ⊢ (𝜑 → ∃!𝑔 ∈ 𝐴 (𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋))) | ||
Theorem | hdmap14lem7 41831* | Combine cases of 𝐹. TODO: Can this be done at once in hdmap14lem3 41827, in order to get rid of hdmap14lem6 41830? Perhaps modify lspsneu 21148 to become ∃!𝑘 ∈ 𝐾 instead of ∃!𝑘 ∈ (𝐾 ∖ { 0 })? (Contributed by NM, 1-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) ⇒ ⊢ (𝜑 → ∃!𝑔 ∈ 𝐴 (𝑆‘(𝐹 · 𝑋)) = (𝑔 ∙ (𝑆‘𝑋))) | ||
Theorem | hdmap14lem8 41832 | Part of proof of part 14 in [Baer] p. 49 lines 33-35. (Contributed by NM, 1-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ✚ = (+g‘𝐶) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐴) & ⊢ (𝜑 → 𝐼 ∈ 𝐴) & ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋))) & ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑌)) = (𝐼 ∙ (𝑆‘𝑌))) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ (𝜑 → 𝐽 ∈ 𝐴) & ⊢ (𝜑 → (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝐽 ∙ (𝑆‘(𝑋 + 𝑌)))) ⇒ ⊢ (𝜑 → ((𝐽 ∙ (𝑆‘𝑋)) ✚ (𝐽 ∙ (𝑆‘𝑌))) = ((𝐺 ∙ (𝑆‘𝑋)) ✚ (𝐼 ∙ (𝑆‘𝑌)))) | ||
Theorem | hdmap14lem9 41833 | Part of proof of part 14 in [Baer] p. 49 line 38. (Contributed by NM, 1-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ✚ = (+g‘𝐶) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐴) & ⊢ (𝜑 → 𝐼 ∈ 𝐴) & ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋))) & ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑌)) = (𝐼 ∙ (𝑆‘𝑌))) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ (𝜑 → 𝐽 ∈ 𝐴) & ⊢ (𝜑 → (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝐽 ∙ (𝑆‘(𝑋 + 𝑌)))) ⇒ ⊢ (𝜑 → 𝐺 = 𝐼) | ||
Theorem | hdmap14lem10 41834 | Part of proof of part 14 in [Baer] p. 49 line 38. (Contributed by NM, 3-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ✚ = (+g‘𝐶) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐴) & ⊢ (𝜑 → 𝐼 ∈ 𝐴) & ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋))) & ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑌)) = (𝐼 ∙ (𝑆‘𝑌))) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) ⇒ ⊢ (𝜑 → 𝐺 = 𝐼) | ||
Theorem | hdmap14lem11 41835 | Part of proof of part 14 in [Baer] p. 50 line 3. (Contributed by NM, 3-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ✚ = (+g‘𝐶) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐴) & ⊢ (𝜑 → 𝐼 ∈ 𝐴) & ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋))) & ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑌)) = (𝐼 ∙ (𝑆‘𝑌))) ⇒ ⊢ (𝜑 → 𝐺 = 𝐼) | ||
Theorem | hdmap14lem12 41836* | Lemma for proof of part 14 in [Baer] p. 50. (Contributed by NM, 6-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑈) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐺 ∈ 𝐴) ⇒ ⊢ (𝜑 → ((𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ↔ ∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) | ||
Theorem | hdmap14lem13 41837* | Lemma for proof of part 14 in [Baer] p. 50. (Contributed by NM, 6-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ 0 = (0g‘𝑈) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐺 ∈ 𝐴) ⇒ ⊢ (𝜑 → ((𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ↔ ∀𝑦 ∈ 𝑉 (𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) | ||
Theorem | hdmap14lem14 41838* | Part of proof of part 14 in [Baer] p. 50 line 3. (Contributed by NM, 6-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) ⇒ ⊢ (𝜑 → ∃!𝑔 ∈ 𝐴 ∀𝑥 ∈ 𝑉 (𝑆‘(𝐹 · 𝑥)) = (𝑔 ∙ (𝑆‘𝑥))) | ||
Theorem | hdmap14lem15 41839* | Part of proof of part 14 in [Baer] p. 50 line 3. Convert scalar base of dual to scalar base of vector space. (Contributed by NM, 6-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) ⇒ ⊢ (𝜑 → ∃!𝑔 ∈ 𝐵 ∀𝑥 ∈ 𝑉 (𝑆‘(𝐹 · 𝑥)) = (𝑔 ∙ (𝑆‘𝑥))) | ||
Syntax | chg 41840 | Extend class notation with g-map. |
class HGMap | ||
Definition | df-hgmap 41841* | Define map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. (Contributed by NM, 25-Mar-2015.) |
⊢ HGMap = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑎 ∣ [((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 ∀𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠 ‘𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝑘)‘𝑤))(𝑚‘𝑣))))})) | ||
Theorem | hgmapffval 41842* | Map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. (Contributed by NM, 25-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑋 → (HGMap‘𝐾) = (𝑤 ∈ 𝐻 ↦ {𝑎 ∣ [((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 ∀𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠 ‘𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚‘𝑣))))})) | ||
Theorem | hgmapfval 41843* | Map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. (Contributed by NM, 25-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝑀 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝐼 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣))))) | ||
Theorem | hgmapval 41844* | Value of map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. Function sigma of scalar f in part 14 of [Baer] p. 50 line 4. TODO: variable names are inherited from older version. Maybe make more consistent with hdmap14lem15 41839. (Contributed by NM, 25-Mar-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝑀 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐼‘𝑋) = (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) | ||
Theorem | hgmapfnN 41845 | Functionality of scalar sigma map. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝐺 Fn 𝐵) | ||
Theorem | hgmapcl 41846 | Closure of scalar sigma map i.e. the map from the vector space scalar base to the dual space scalar base. (Contributed by NM, 6-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺‘𝐹) ∈ 𝐵) | ||
Theorem | hgmapdcl 41847 | Closure of the vector space to dual space scalar map, in the scalar sigma map. (Contributed by NM, 6-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝑄 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑄) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺‘𝐹) ∈ 𝐴) | ||
Theorem | hgmapvs 41848 | Part 15 of [Baer] p. 50 line 6. Also line 15 in [Holland95] p. 14. (Contributed by NM, 6-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑋)) = ((𝐺‘𝐹) ∙ (𝑆‘𝑋))) | ||
Theorem | hgmapval0 41849 | Value of the scalar sigma map at zero. (Contributed by NM, 12-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → (𝐺‘ 0 ) = 0 ) | ||
Theorem | hgmapval1 41850 | Value of the scalar sigma map at one. (Contributed by NM, 12-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → (𝐺‘ 1 ) = 1 ) | ||
Theorem | hgmapadd 41851 | Part 15 of [Baer] p. 50 line 13. (Contributed by NM, 6-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺‘(𝑋 + 𝑌)) = ((𝐺‘𝑋) + (𝐺‘𝑌))) | ||
Theorem | hgmapmul 41852 | Part 15 of [Baer] p. 50 line 16. The multiplication is reversed after converting to the dual space scalar to the vector space scalar. (Contributed by NM, 7-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺‘(𝑋 · 𝑌)) = ((𝐺‘𝑌) · (𝐺‘𝑋))) | ||
Theorem | hgmaprnlem1N 41853 | Lemma for hgmaprnN 41858. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑧 ∈ 𝐴) & ⊢ (𝜑 → 𝑡 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑠 ∈ 𝑉) & ⊢ (𝜑 → (𝑆‘𝑠) = (𝑧 ∙ (𝑆‘𝑡))) & ⊢ (𝜑 → 𝑘 ∈ 𝐵) & ⊢ (𝜑 → 𝑠 = (𝑘 · 𝑡)) ⇒ ⊢ (𝜑 → 𝑧 ∈ ran 𝐺) | ||
Theorem | hgmaprnlem2N 41854 | Lemma for hgmaprnN 41858. Part 15 of [Baer] p. 50 line 20. We only require a subset relation, rather than equality, so that the case of zero 𝑧 is taken care of automatically. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑧 ∈ 𝐴) & ⊢ (𝜑 → 𝑡 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑠 ∈ 𝑉) & ⊢ (𝜑 → (𝑆‘𝑠) = (𝑧 ∙ (𝑆‘𝑡))) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐿 = (LSpan‘𝐶) ⇒ ⊢ (𝜑 → (𝑁‘{𝑠}) ⊆ (𝑁‘{𝑡})) | ||
Theorem | hgmaprnlem3N 41855* | Lemma for hgmaprnN 41858. Eliminate 𝑘. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑧 ∈ 𝐴) & ⊢ (𝜑 → 𝑡 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑠 ∈ 𝑉) & ⊢ (𝜑 → (𝑆‘𝑠) = (𝑧 ∙ (𝑆‘𝑡))) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐿 = (LSpan‘𝐶) ⇒ ⊢ (𝜑 → 𝑧 ∈ ran 𝐺) | ||
Theorem | hgmaprnlem4N 41856* | Lemma for hgmaprnN 41858. Eliminate 𝑠. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑧 ∈ 𝐴) & ⊢ (𝜑 → 𝑡 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → 𝑧 ∈ ran 𝐺) | ||
Theorem | hgmaprnlem5N 41857 | Lemma for hgmaprnN 41858. Eliminate 𝑡. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑧 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝑧 ∈ ran 𝐺) | ||
Theorem | hgmaprnN 41858 | Part of proof of part 16 in [Baer] p. 50 line 23, Fs=G, except that we use the original vector space scalars for the range. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → ran 𝐺 = 𝐵) | ||
Theorem | hgmap11 41859 | The scalar sigma map is one-to-one. (Contributed by NM, 7-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝐺‘𝑋) = (𝐺‘𝑌) ↔ 𝑋 = 𝑌)) | ||
Theorem | hgmapf1oN 41860 | The scalar sigma map is a one-to-one onto function. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝐺:𝐵–1-1-onto→𝐵) | ||
Theorem | hgmapeq0 41861 | The scalar sigma map is zero iff its argument is zero. (Contributed by NM, 12-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝐺‘𝑋) = 0 ↔ 𝑋 = 0 )) | ||
Theorem | hdmapipcl 41862 | The inner product (Hermitian form) (𝑋, 𝑌) will be defined as ((𝑆‘𝑌)‘𝑋). Show closure. (Contributed by NM, 7-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑆‘𝑌)‘𝑋) ∈ 𝐵) | ||
Theorem | hdmapln1 41863 | Linearity property that will be used for inner product. TODO: try to combine hypotheses in hdmap*ln* series. (Contributed by NM, 7-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ ⨣ = (+g‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑆‘𝑍)‘((𝐴 · 𝑋) + 𝑌)) = ((𝐴 × ((𝑆‘𝑍)‘𝑋)) ⨣ ((𝑆‘𝑍)‘𝑌))) | ||
Theorem | hdmaplna1 41864 | Additive property of first (inner product) argument. (Contributed by NM, 11-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ ⨣ = (+g‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑆‘𝑍)‘(𝑋 + 𝑌)) = (((𝑆‘𝑍)‘𝑋) ⨣ ((𝑆‘𝑍)‘𝑌))) | ||
Theorem | hdmaplns1 41865 | Subtraction property of first (inner product) argument. (Contributed by NM, 12-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝑁 = (-g‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑆‘𝑍)‘(𝑋 − 𝑌)) = (((𝑆‘𝑍)‘𝑋)𝑁((𝑆‘𝑍)‘𝑌))) | ||
Theorem | hdmaplnm1 41866 | Multiplicative property of first (inner product) argument. (Contributed by NM, 11-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑆‘𝑌)‘(𝐴 · 𝑋)) = (𝐴 × ((𝑆‘𝑌)‘𝑋))) | ||
Theorem | hdmaplna2 41867 | Additive property of second (inner product) argument. (Contributed by NM, 10-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ ⨣ = (+g‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑆‘(𝑌 + 𝑍))‘𝑋) = (((𝑆‘𝑌)‘𝑋) ⨣ ((𝑆‘𝑍)‘𝑋))) | ||
Theorem | hdmapglnm2 41868 | g-linear property of second (inner product) argument. Line 19 in [Holland95] p. 14. (Contributed by NM, 10-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑆‘(𝐴 · 𝑌))‘𝑋) = (((𝑆‘𝑌)‘𝑋) × (𝐺‘𝐴))) | ||
Theorem | hdmapgln2 41869 | g-linear property that will be used for inner product. (Contributed by NM, 14-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ ⨣ = (+g‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑆‘((𝐴 · 𝑌) + 𝑍))‘𝑋) = ((((𝑆‘𝑌)‘𝑋) × (𝐺‘𝐴)) ⨣ ((𝑆‘𝑍)‘𝑋))) | ||
Theorem | hdmaplkr 41870 | Kernel of the vector to dual map. Line 16 in [Holland95] p. 14. TODO: eliminate 𝐹 hypothesis. (Contributed by NM, 9-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝑌 = (LKer‘𝑈) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑌‘(𝑆‘𝑋)) = (𝑂‘{𝑋})) | ||
Theorem | hdmapellkr 41871 | Membership in the kernel (as shown by hdmaplkr 41870) of the vector to dual map. Line 17 in [Holland95] p. 14. (Contributed by NM, 16-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (((𝑆‘𝑋)‘𝑌) = 0 ↔ 𝑌 ∈ (𝑂‘{𝑋}))) | ||
Theorem | hdmapip0 41872 | Zero property that will be used for inner product. (Contributed by NM, 9-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝑍 = (0g‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (((𝑆‘𝑋)‘𝑋) = 𝑍 ↔ 𝑋 = 0 )) | ||
Theorem | hdmapip1 41873 | Construct a proportional vector 𝑌 whose inner product with the original 𝑋 equals one. (Contributed by NM, 13-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑁 = (invr‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ 𝑌 = ((𝑁‘((𝑆‘𝑋)‘𝑋)) · 𝑋) ⇒ ⊢ (𝜑 → ((𝑆‘𝑋)‘𝑌) = 1 ) | ||
Theorem | hdmapip0com 41874 | Commutation property of Baer's sigma map (Holland's A map). Line 20 of [Holland95] p. 14. Also part of Lemma 1 of [Baer] p. 110 line 7. (Contributed by NM, 9-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (((𝑆‘𝑋)‘𝑌) = 0 ↔ ((𝑆‘𝑌)‘𝑋) = 0 )) | ||
Theorem | hdmapinvlem1 41875 | Line 27 in [Baer] p. 110. We use 𝐶 for Baer's u. Our unit vector 𝐸 has the required properties for his w by hdmapevec2 41793. Our ((𝑆‘𝐸)‘𝐶) means the inner product 〈𝐶, 𝐸〉 i.e. his f(u,w) (note argument reversal). (Contributed by NM, 11-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐶 ∈ (𝑂‘{𝐸})) ⇒ ⊢ (𝜑 → ((𝑆‘𝐸)‘𝐶) = 0 ) | ||
Theorem | hdmapinvlem2 41876 | Line 28 in [Baer] p. 110, 0 = f(w,u). (Contributed by NM, 11-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐶 ∈ (𝑂‘{𝐸})) ⇒ ⊢ (𝜑 → ((𝑆‘𝐶)‘𝐸) = 0 ) | ||
Theorem | hdmapinvlem3 41877 | Line 30 in [Baer] p. 110, f(sw + u, tw - v) = 0. (Contributed by NM, 12-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐶 ∈ (𝑂‘{𝐸})) & ⊢ (𝜑 → 𝐷 ∈ (𝑂‘{𝐸})) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ 𝐵) & ⊢ (𝜑 → (𝐼 × (𝐺‘𝐽)) = ((𝑆‘𝐷)‘𝐶)) ⇒ ⊢ (𝜑 → ((𝑆‘((𝐽 · 𝐸) − 𝐷))‘((𝐼 · 𝐸) + 𝐶)) = 0 ) | ||
Theorem | hdmapinvlem4 41878 | Part 1.1 of Proposition 1 of [Baer] p. 110. We use 𝐶, 𝐷, 𝐼, and 𝐽 for Baer's u, v, s, and t. Our unit vector 𝐸 has the required properties for his w by hdmapevec2 41793. Our ((𝑆‘𝐷)‘𝐶) means his f(u,v) (note argument reversal). (Contributed by NM, 12-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐶 ∈ (𝑂‘{𝐸})) & ⊢ (𝜑 → 𝐷 ∈ (𝑂‘{𝐸})) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ 𝐵) & ⊢ (𝜑 → (𝐼 × (𝐺‘𝐽)) = ((𝑆‘𝐷)‘𝐶)) ⇒ ⊢ (𝜑 → (𝐽 × (𝐺‘𝐼)) = ((𝑆‘𝐶)‘𝐷)) | ||
Theorem | hdmapglem5 41879 | Part 1.2 in [Baer] p. 110 line 34, f(u,v) alpha = f(v,u). (Contributed by NM, 12-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐶 ∈ (𝑂‘{𝐸})) & ⊢ (𝜑 → 𝐷 ∈ (𝑂‘{𝐸})) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺‘((𝑆‘𝐷)‘𝐶)) = ((𝑆‘𝐶)‘𝐷)) | ||
Theorem | hgmapvvlem1 41880 | Involution property of scalar sigma map. Line 10 in [Baer] p. 111, t sigma squared = t. Our 𝐸, 𝐶, 𝐷, 𝑌, 𝑋 correspond to Baer's w, h, k, s, t. (Contributed by NM, 13-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑁 = (invr‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ { 0 })) & ⊢ (𝜑 → 𝐶 ∈ (𝑂‘{𝐸})) & ⊢ (𝜑 → 𝐷 ∈ (𝑂‘{𝐸})) & ⊢ (𝜑 → ((𝑆‘𝐷)‘𝐶) = 1 ) & ⊢ (𝜑 → 𝑌 ∈ (𝐵 ∖ { 0 })) & ⊢ (𝜑 → (𝑌 × (𝐺‘𝑋)) = 1 ) ⇒ ⊢ (𝜑 → (𝐺‘(𝐺‘𝑋)) = 𝑋) | ||
Theorem | hgmapvvlem2 41881 | Lemma for hgmapvv 41883. Eliminate 𝑌 (Baer's s). (Contributed by NM, 13-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑁 = (invr‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ { 0 })) & ⊢ (𝜑 → 𝐶 ∈ (𝑂‘{𝐸})) & ⊢ (𝜑 → 𝐷 ∈ (𝑂‘{𝐸})) & ⊢ (𝜑 → ((𝑆‘𝐷)‘𝐶) = 1 ) ⇒ ⊢ (𝜑 → (𝐺‘(𝐺‘𝑋)) = 𝑋) | ||
Theorem | hgmapvvlem3 41882 | Lemma for hgmapvv 41883. Eliminate ((𝑆‘𝐷)‘𝐶) = 1 (Baer's f(h,k)=1). (Contributed by NM, 13-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑁 = (invr‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝐺‘(𝐺‘𝑋)) = 𝑋) | ||
Theorem | hgmapvv 41883 | Value of a double involution. Part 1.2 of [Baer] p. 110 line 37. (Contributed by NM, 13-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺‘(𝐺‘𝑋)) = 𝑋) | ||
Theorem | hdmapglem7a 41884* | Lemma for hdmapg 41887. (Contributed by NM, 14-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃𝑢 ∈ (𝑂‘{𝐸})∃𝑘 ∈ 𝐵 𝑋 = ((𝑘 · 𝐸) + 𝑢)) | ||
Theorem | hdmapglem7b 41885 | Lemma for hdmapg 41887. (Contributed by NM, 14-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ × = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ ✚ = (+g‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → 𝑥 ∈ (𝑂‘{𝐸})) & ⊢ (𝜑 → 𝑦 ∈ (𝑂‘{𝐸})) & ⊢ (𝜑 → 𝑚 ∈ 𝐵) & ⊢ (𝜑 → 𝑛 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑆‘((𝑚 · 𝐸) + 𝑥))‘((𝑛 · 𝐸) + 𝑦)) = ((𝑛 × (𝐺‘𝑚)) ✚ ((𝑆‘𝑥)‘𝑦))) | ||
Theorem | hdmapglem7 41886 | Lemma for hdmapg 41887. Line 15 in [Baer] p. 111, f(x,y) alpha = f(y,x). In the proof, our 𝐸, (𝑂‘{𝐸}), 𝑋, 𝑌, 𝑘, 𝑢, 𝑙, and 𝑣 correspond respectively to Baer's w, H, x, y, x', x'', y', and y'', and our ((𝑆‘𝑌)‘𝑋) corresponds to Baer's f(x,y). (Contributed by NM, 14-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ × = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ ✚ = (+g‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐺‘((𝑆‘𝑌)‘𝑋)) = ((𝑆‘𝑋)‘𝑌)) | ||
Theorem | hdmapg 41887 | Apply the scalar sigma function (involution) 𝐺 to an inner product reverses the arguments. The inner product of 𝑋 and 𝑌 is represented by ((𝑆‘𝑌)‘𝑋). Line 15 in [Baer] p. 111, f(x,y) alpha = f(y,x). (Contributed by NM, 14-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐺‘((𝑆‘𝑌)‘𝑋)) = ((𝑆‘𝑋)‘𝑌)) | ||
Theorem | hdmapoc 41888* | Express our constructed orthocomplement (polarity) in terms of the Hilbert space definition of orthocomplement. Lines 24 and 25 in [Holland95] p. 14. (Contributed by NM, 17-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ⊆ 𝑉) ⇒ ⊢ (𝜑 → (𝑂‘𝑋) = {𝑦 ∈ 𝑉 ∣ ∀𝑧 ∈ 𝑋 ((𝑆‘𝑧)‘𝑦) = 0 }) | ||
Syntax | chlh 41889 | Extend class notation with the final constructed Hilbert space. |
class HLHil | ||
Definition | df-hlhil 41890* | Define our final Hilbert space constructed from a Hilbert lattice. (Contributed by NM, 21-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
⊢ HLHil = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ ⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx), 𝑣〉, 〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx), (((EDRing‘𝑘)‘𝑤) sSet 〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘𝑢)〉, 〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉}))) | ||
Theorem | hlhilset 41891* | The final Hilbert space constructed from a Hilbert lattice 𝐾 and an arbitrary hyperplane 𝑊 in 𝐾. (Contributed by NM, 21-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐿 = ((HLHil‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 𝐸 = ((EDRing‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ 𝑅 = (𝐸 sSet 〈(*𝑟‘ndx), 𝐺〉) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ , = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝑆‘𝑦)‘𝑥)) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝐿 = ({〈(Base‘ndx), 𝑉〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉})) | ||
Theorem | hlhilsca 41892 | The scalar of the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝐸 = ((EDRing‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ 𝑅 = (𝐸 sSet 〈(*𝑟‘ndx), 𝐺〉) ⇒ ⊢ (𝜑 → 𝑅 = (Scalar‘𝑈)) | ||
Theorem | hlhilbase 41893 | The base set of the final constructed Hilbert space. (Contributed by NM, 21-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑀 = (Base‘𝐿) ⇒ ⊢ (𝜑 → 𝑀 = (Base‘𝑈)) | ||
Theorem | hlhilplus 41894 | The vector addition for the final constructed Hilbert space. (Contributed by NM, 21-Jun-2015.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) & ⊢ + = (+g‘𝐿) ⇒ ⊢ (𝜑 → + = (+g‘𝑈)) | ||
Theorem | hlhilslem 41895 | Lemma for hlhilsbase 41897 etc. (Contributed by Mario Carneiro, 28-Jun-2015.) (Revised by AV, 6-Nov-2024.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = ((EDRing‘𝐾)‘𝑊) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝐹 = Slot (𝐹‘ndx) & ⊢ (𝐹‘ndx) ≠ (*𝑟‘ndx) & ⊢ 𝐶 = (𝐹‘𝐸) ⇒ ⊢ (𝜑 → 𝐶 = (𝐹‘𝑅)) | ||
Theorem | hlhilslemOLD 41896 | Obsolete version of hlhilslem 41895 as of 6-Nov-2024. Lemma for hlhilsbase 41897. (Contributed by Mario Carneiro, 28-Jun-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = ((EDRing‘𝐾)‘𝑊) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝐹 = Slot 𝑁 & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑁 < 4 & ⊢ 𝐶 = (𝐹‘𝐸) ⇒ ⊢ (𝜑 → 𝐶 = (𝐹‘𝑅)) | ||
Theorem | hlhilsbase 41897 | The scalar base set of the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) (Revised by AV, 6-Nov-2024.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = ((EDRing‘𝐾)‘𝑊) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝐶 = (Base‘𝐸) ⇒ ⊢ (𝜑 → 𝐶 = (Base‘𝑅)) | ||
Theorem | hlhilsbaseOLD 41898 | Obsolete version of hlhilsbase 41897 as of 6-Nov-2024. The scalar base set of the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = ((EDRing‘𝐾)‘𝑊) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝐶 = (Base‘𝐸) ⇒ ⊢ (𝜑 → 𝐶 = (Base‘𝑅)) | ||
Theorem | hlhilsplus 41899 | Scalar addition for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) (Revised by AV, 6-Nov-2024.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = ((EDRing‘𝐾)‘𝑊) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ + = (+g‘𝐸) ⇒ ⊢ (𝜑 → + = (+g‘𝑅)) | ||
Theorem | hlhilsplusOLD 41900 | Obsolete version of hlhilsplus 41899 as of 6-Nov-2024. The scalar addition for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = ((EDRing‘𝐾)‘𝑊) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ + = (+g‘𝐸) ⇒ ⊢ (𝜑 → + = (+g‘𝑅)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |