Home | Metamath
Proof Explorer Theorem List (p. 419 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | int-mul12d 41801 | Second MultiplicationOne generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (1 · 𝐴) = 𝐵) | ||
Theorem | int-add01d 41802 | First AdditionZero generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 + 0) = 𝐵) | ||
Theorem | int-add02d 41803 | Second AdditionZero generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (0 + 𝐴) = 𝐵) | ||
Theorem | int-sqgeq0d 41804 | SquareGEQZero generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 0 ≤ (𝐴 · 𝐵)) | ||
Theorem | int-eqprincd 41805 | PrincipleOfEquality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 + 𝐶) = (𝐵 + 𝐷)) | ||
Theorem | int-eqtransd 41806 | EqualityTransitivity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → 𝐴 = 𝐶) | ||
Theorem | int-eqmvtd 41807 | EquMoveTerm generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐴 = (𝐶 + 𝐷)) ⇒ ⊢ (𝜑 → 𝐶 = (𝐵 − 𝐷)) | ||
Theorem | int-eqineqd 41808 | EquivalenceImpliesDoubleInequality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → 𝐵 ≤ 𝐴) | ||
Theorem | int-ineqmvtd 41809 | IneqMoveTerm generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 = (𝐶 + 𝐷)) ⇒ ⊢ (𝜑 → (𝐵 − 𝐷) ≤ 𝐶) | ||
Theorem | int-ineq1stprincd 41810 | FirstPrincipleOfInequality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≤ 𝐴) & ⊢ (𝜑 → 𝐷 ≤ 𝐶) ⇒ ⊢ (𝜑 → (𝐵 + 𝐷) ≤ (𝐴 + 𝐶)) | ||
Theorem | int-ineq2ndprincd 41811 | SecondPrincipleOfInequality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≤ 𝐴) & ⊢ (𝜑 → 0 ≤ 𝐶) ⇒ ⊢ (𝜑 → (𝐵 · 𝐶) ≤ (𝐴 · 𝐶)) | ||
Theorem | int-ineqtransd 41812 | InequalityTransitivity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ≤ 𝐴) & ⊢ (𝜑 → 𝐶 ≤ 𝐵) ⇒ ⊢ (𝜑 → 𝐶 ≤ 𝐴) | ||
This section formalizes theorems used in an n-digit addition proof generator. Other theorems required: deccl 12461 addcomli 11176 00id 11159 addid1i 11171 addid2i 11172 eqid 2739 dec0h 12468 decadd 12500 decaddc 12501. | ||
Theorem | unitadd 41813 | Theorem used in conjunction with decaddc 12501 to absorb carry when generating n-digit addition synthetic proofs. (Contributed by Stanislas Polu, 7-Apr-2020.) |
⊢ (𝐴 + 𝐵) = 𝐹 & ⊢ (𝐶 + 1) = 𝐵 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 ⇒ ⊢ ((𝐴 + 𝐶) + 1) = 𝐹 | ||
Theorem | gsumws3 41814 | Valuation of a length 3 word in a monoid. (Contributed by Stanislas Polu, 9-Sep-2020.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ 𝑈 ∈ 𝐵))) → (𝐺 Σg 〈“𝑆𝑇𝑈”〉) = (𝑆 + (𝑇 + 𝑈))) | ||
Theorem | gsumws4 41815 | Valuation of a length 4 word in a monoid. (Contributed by Stanislas Polu, 10-Sep-2020.) |
⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ (𝑆 ∈ 𝐵 ∧ (𝑇 ∈ 𝐵 ∧ (𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵)))) → (𝐺 Σg 〈“𝑆𝑇𝑈𝑉”〉) = (𝑆 + (𝑇 + (𝑈 + 𝑉)))) | ||
Theorem | amgm2d 41816 | Arithmetic-geometric mean inequality for 𝑛 = 2, derived from amgmlem 26148. (Contributed by Stanislas Polu, 8-Sep-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐵)↑𝑐(1 / 2)) ≤ ((𝐴 + 𝐵) / 2)) | ||
Theorem | amgm3d 41817 | Arithmetic-geometric mean inequality for 𝑛 = 3. (Contributed by Stanislas Polu, 11-Sep-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → ((𝐴 · (𝐵 · 𝐶))↑𝑐(1 / 3)) ≤ ((𝐴 + (𝐵 + 𝐶)) / 3)) | ||
Theorem | amgm4d 41818 | Arithmetic-geometric mean inequality for 𝑛 = 4. (Contributed by Stanislas Polu, 11-Sep-2020.) |
⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) ⇒ ⊢ (𝜑 → ((𝐴 · (𝐵 · (𝐶 · 𝐷)))↑𝑐(1 / 4)) ≤ ((𝐴 + (𝐵 + (𝐶 + 𝐷))) / 4)) | ||
Theorem | spALT 41819 | sp 2177 can be proven from the other classic axioms. (Contributed by Rohan Ridenour, 3-Nov-2023.) (Proof modification is discouraged.) Use sp 2177 instead. (New usage is discouraged.) |
⊢ (∀𝑥𝜑 → 𝜑) | ||
Theorem | elnelneqd 41820 | Two classes are not equal if there is an element of one which is not an element of the other. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐴 = 𝐵) | ||
Theorem | elnelneq2d 41821 | Two classes are not equal if one but not the other is an element of a given class. (Contributed by Rohan Ridenour, 12-Aug-2023.) |
⊢ (𝜑 → 𝐴 ∈ 𝐶) & ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → ¬ 𝐴 = 𝐵) | ||
Theorem | rr-spce 41822* | Prove an existential. (Contributed by Rohan Ridenour, 12-Aug-2023.) |
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝜓) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃𝑥𝜓) | ||
Theorem | rexlimdvaacbv 41823* | Unpack a restricted existential antecedent while changing the variable with implicit substitution. The equivalent of this theorem without the bound variable change is rexlimdvaa 3215. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) & ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝜃)) → 𝜒) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) | ||
Theorem | rexlimddvcbvw 41824* | Unpack a restricted existential assumption while changing the variable with implicit substitution. Similar to rexlimdvaacbv 41823. The equivalent of this theorem without the bound variable change is rexlimddv 3221. Version of rexlimddvcbv 41825 with a disjoint variable condition, which does not require ax-13 2373. (Contributed by Rohan Ridenour, 3-Aug-2023.) (Revised by Gino Giotto, 2-Apr-2024.) |
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜃) & ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝜒)) → 𝜓) & ⊢ (𝑥 = 𝑦 → (𝜃 ↔ 𝜒)) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | rexlimddvcbv 41825* | Unpack a restricted existential assumption while changing the variable with implicit substitution. Similar to rexlimdvaacbv 41823. The equivalent of this theorem without the bound variable change is rexlimddv 3221. Usage of this theorem is discouraged because it depends on ax-13 2373, see rexlimddvcbvw 41824 for a weaker version that does not require it. (Contributed by Rohan Ridenour, 3-Aug-2023.) (New usage is discouraged.) |
⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜃) & ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝜒)) → 𝜓) & ⊢ (𝑥 = 𝑦 → (𝜃 ↔ 𝜒)) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | rr-elrnmpt3d 41826* | Elementhood in an image set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → 𝐷 ∈ ran 𝐹) | ||
Theorem | finnzfsuppd 41827* | If a function is zero outside of a finite set, it has finite support. (Contributed by Rohan Ridenour, 13-May-2024.) |
⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 Fn 𝐷) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑥 ∈ 𝐴 ∨ (𝐹‘𝑥) = 𝑍)) ⇒ ⊢ (𝜑 → 𝐹 finSupp 𝑍) | ||
Theorem | rr-phpd 41828 | Equivalent of php 9002 without negation. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
⊢ (𝜑 → 𝐴 ∈ ω) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝐴 ≈ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | suceqd 41829 | Deduction associated with suceq 6335. (Contributed by Rohan Ridenour, 8-Aug-2023.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → suc 𝐴 = suc 𝐵) | ||
Theorem | tfindsd 41830* | Deduction associated with tfinds 7715. (Contributed by Rohan Ridenour, 8-Aug-2023.) |
⊢ (𝑥 = ∅ → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = suc 𝑦 → (𝜓 ↔ 𝜏)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜑 ∧ 𝑦 ∈ On ∧ 𝜃) → 𝜏) & ⊢ ((𝜑 ∧ Lim 𝑥 ∧ ∀𝑦 ∈ 𝑥 𝜃) → 𝜓) & ⊢ (𝜑 → 𝐴 ∈ On) ⇒ ⊢ (𝜑 → 𝜂) | ||
Syntax | cmnring 41831 | Extend class notation with the monoid ring function. |
class MndRing | ||
Definition | df-mnring 41832* | Define the monoid ring function. This takes a monoid 𝑀 and a ring 𝑅 and produces a free left module over 𝑅 with a product extending the monoid function on 𝑀. (Contributed by Rohan Ridenour, 13-May-2024.) |
⊢ MndRing = (𝑟 ∈ V, 𝑚 ∈ V ↦ ⦋(𝑟 freeLMod (Base‘𝑚)) / 𝑣⦌(𝑣 sSet 〈(.r‘ndx), (𝑥 ∈ (Base‘𝑣), 𝑦 ∈ (Base‘𝑣) ↦ (𝑣 Σg (𝑎 ∈ (Base‘𝑚), 𝑏 ∈ (Base‘𝑚) ↦ (𝑖 ∈ (Base‘𝑚) ↦ if(𝑖 = (𝑎(+g‘𝑚)𝑏), ((𝑥‘𝑎)(.r‘𝑟)(𝑦‘𝑏)), (0g‘𝑟))))))〉)) | ||
Theorem | mnringvald 41833* | Value of the monoid ring function. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ 𝐵 = (Base‘𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐹 = (𝑉 sSet 〈(.r‘ndx), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑉 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥‘𝑎) · (𝑦‘𝑏)), 0 )))))〉)) | ||
Theorem | mnringnmulrd 41834 | Components of a monoid ring other than its ring product match its underlying free module. (Contributed by Rohan Ridenour, 14-May-2024.) (Revised by AV, 1-Nov-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ (.r‘ndx) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐸‘𝑉) = (𝐸‘𝐹)) | ||
Theorem | mnringnmulrdOLD 41835 | Obsolete version of mnringnmulrd 41834 as of 1-Nov-2024. Components of a monoid ring other than its ring product match its underlying free module. (Contributed by Rohan Ridenour, 14-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐸 = Slot 𝑁 & ⊢ 𝑁 ∈ ℕ & ⊢ 𝑁 ≠ (.r‘ndx) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐸‘𝑉) = (𝐸‘𝐹)) | ||
Theorem | mnringbased 41836 | The base set of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (Proof shortened by AV, 1-Nov-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ 𝐵 = (Base‘𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝐹)) | ||
Theorem | mnringbasedOLD 41837 | Obsolete version of mnringnmulrd 41834 as of 1-Nov-2024. The base set of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ 𝐵 = (Base‘𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝐹)) | ||
Theorem | mnringbaserd 41838 | The base set of a monoid ring. Converse of mnringbased 41836. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝑉)) | ||
Theorem | mnringelbased 41839 | Membership in the base set of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝐶 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝐵 ↔ (𝑋 ∈ (𝐶 ↑m 𝐴) ∧ 𝑋 finSupp 0 ))) | ||
Theorem | mnringbasefd 41840 | Elements of a monoid ring are functions. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝐶 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋:𝐴⟶𝐶) | ||
Theorem | mnringbasefsuppd 41841 | Elements of a monoid ring are finitely supported. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋 finSupp 0 ) | ||
Theorem | mnringaddgd 41842 | The additive operation of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (Proof shortened by AV, 1-Nov-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (+g‘𝑉) = (+g‘𝐹)) | ||
Theorem | mnringaddgdOLD 41843 | Obsolete version of mnringaddgd 41842 as of 1-Nov-2024. The additive operation of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (+g‘𝑉) = (+g‘𝐹)) | ||
Theorem | mnring0gd 41844 | The additive identity of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐴) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (0g‘𝑉) = (0g‘𝐹)) | ||
Theorem | mnring0g2d 41845 | The additive identity of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐴 × { 0 }) = (0g‘𝐹)) | ||
Theorem | mnringmulrd 41846* | The ring product of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝐹 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑥‘𝑎) · (𝑦‘𝑏)), 0 ))))) = (.r‘𝐹)) | ||
Theorem | mnringscad 41847 | The scalar ring of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (Proof shortened by AV, 1-Nov-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝑅 = (Scalar‘𝐹)) | ||
Theorem | mnringscadOLD 41848 | Obsolete version of mnringscad 41847 as of 1-Nov-2024. The scalar ring of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝑅 = (Scalar‘𝐹)) | ||
Theorem | mnringvscad 41849 | The scalar product of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (Proof shortened by AV, 1-Nov-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → ( ·𝑠 ‘𝑉) = ( ·𝑠 ‘𝐹)) | ||
Theorem | mnringvscadOLD 41850 | Obsolete version of mnringvscad 41849 as of 1-Nov-2024. The scalar product of a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑉 = (𝑅 freeLMod 𝐵) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) ⇒ ⊢ (𝜑 → ( ·𝑠 ‘𝑉) = ( ·𝑠 ‘𝐹)) | ||
Theorem | mnringlmodd 41851 | Monoid rings are left modules. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑀 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝐹 ∈ LMod) | ||
Theorem | mnringmulrvald 41852* | Value of multiplication in a monoid ring. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ ∙ = (.r‘𝑅) & ⊢ 𝟎 = (0g‘𝑅) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ · = (.r‘𝐹) & ⊢ (𝜑 → 𝑅 ∈ 𝑈) & ⊢ (𝜑 → 𝑀 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · 𝑌) = (𝐹 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎 + 𝑏), ((𝑋‘𝑎) ∙ (𝑌‘𝑏)), 𝟎 ))))) | ||
Theorem | mnringmulrcld 41853 | Monoid rings are closed under multiplication. (Contributed by Rohan Ridenour, 14-May-2024.) |
⊢ 𝐹 = (𝑅 MndRing 𝑀) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ 𝐴 = (Base‘𝑀) & ⊢ · = (.r‘𝐹) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑀 ∈ 𝑈) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) | ||
Theorem | gru0eld 41854 | A nonempty Grothendieck universe contains the empty set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝜑 → 𝐺 ∈ Univ) & ⊢ (𝜑 → 𝐴 ∈ 𝐺) ⇒ ⊢ (𝜑 → ∅ ∈ 𝐺) | ||
Theorem | grusucd 41855 | Grothendieck universes are closed under ordinal successor. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
⊢ (𝜑 → 𝐺 ∈ Univ) & ⊢ (𝜑 → 𝐴 ∈ 𝐺) ⇒ ⊢ (𝜑 → suc 𝐴 ∈ 𝐺) | ||
Theorem | r1rankcld 41856 | Any rank of the cumulative hierarchy is closed under the rank function. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝜑 → 𝐴 ∈ (𝑅1‘𝑅)) ⇒ ⊢ (𝜑 → (rank‘𝐴) ∈ (𝑅1‘𝑅)) | ||
Theorem | grur1cld 41857 | Grothendieck universes are closed under the cumulative hierarchy function. (Contributed by Rohan Ridenour, 8-Aug-2023.) |
⊢ (𝜑 → 𝐺 ∈ Univ) & ⊢ (𝜑 → 𝐴 ∈ 𝐺) ⇒ ⊢ (𝜑 → (𝑅1‘𝐴) ∈ 𝐺) | ||
Theorem | grurankcld 41858 | Grothendieck universes are closed under the rank function. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
⊢ (𝜑 → 𝐺 ∈ Univ) & ⊢ (𝜑 → 𝐴 ∈ 𝐺) ⇒ ⊢ (𝜑 → (rank‘𝐴) ∈ 𝐺) | ||
Theorem | grurankrcld 41859 | If a Grothendieck universe contains a set's rank, it contains that set. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
⊢ (𝜑 → 𝐺 ∈ Univ) & ⊢ (𝜑 → (rank‘𝐴) ∈ 𝐺) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐺) | ||
Syntax | cscott 41860 | Extend class notation with the Scott's trick operation. |
class Scott 𝐴 | ||
Definition | df-scott 41861* | Define the Scott operation. This operation constructs a subset of the input class which is nonempty whenever its input is using Scott's trick. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
⊢ Scott 𝐴 = {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} | ||
Theorem | scotteqd 41862 | Equality theorem for the Scott operation. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → Scott 𝐴 = Scott 𝐵) | ||
Theorem | scotteq 41863 | Closed form of scotteqd 41862. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
⊢ (𝐴 = 𝐵 → Scott 𝐴 = Scott 𝐵) | ||
Theorem | nfscott 41864 | Bound-variable hypothesis builder for the Scott operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥Scott 𝐴 | ||
Theorem | scottabf 41865* | Value of the Scott operation at a class abstraction. Variant of scottab 41866 with a nonfreeness hypothesis instead of a disjoint variable condition. (Contributed by Rohan Ridenour, 14-Aug-2023.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ Scott {𝑥 ∣ 𝜑} = {𝑥 ∣ (𝜑 ∧ ∀𝑦(𝜓 → (rank‘𝑥) ⊆ (rank‘𝑦)))} | ||
Theorem | scottab 41866* | Value of the Scott operation at a class abstraction. (Contributed by Rohan Ridenour, 14-Aug-2023.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ Scott {𝑥 ∣ 𝜑} = {𝑥 ∣ (𝜑 ∧ ∀𝑦(𝜓 → (rank‘𝑥) ⊆ (rank‘𝑦)))} | ||
Theorem | scottabes 41867* | Value of the Scott operation at a class abstraction. Variant of scottab 41866 using explicit substitution. (Contributed by Rohan Ridenour, 14-Aug-2023.) |
⊢ Scott {𝑥 ∣ 𝜑} = {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} | ||
Theorem | scottss 41868 | Scott's trick produces a subset of the input class. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ Scott 𝐴 ⊆ 𝐴 | ||
Theorem | elscottab 41869* | An element of the output of the Scott operation applied to a class abstraction satisfies the class abstraction's predicate. (Contributed by Rohan Ridenour, 14-Aug-2023.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝑦 ∈ Scott {𝑥 ∣ 𝜑} → 𝜓) | ||
Theorem | scottex2 41870 | scottex 9652 expressed using Scott. (Contributed by Rohan Ridenour, 9-Aug-2023.) |
⊢ Scott 𝐴 ∈ V | ||
Theorem | scotteld 41871* | The Scott operation sends inhabited classes to inhabited sets. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴) ⇒ ⊢ (𝜑 → ∃𝑥 𝑥 ∈ Scott 𝐴) | ||
Theorem | scottelrankd 41872 | Property of a Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝜑 → 𝐵 ∈ Scott 𝐴) & ⊢ (𝜑 → 𝐶 ∈ Scott 𝐴) ⇒ ⊢ (𝜑 → (rank‘𝐵) ⊆ (rank‘𝐶)) | ||
Theorem | scottrankd 41873 | Rank of a nonempty Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝜑 → 𝐵 ∈ Scott 𝐴) ⇒ ⊢ (𝜑 → (rank‘Scott 𝐴) = suc (rank‘𝐵)) | ||
Theorem | gruscottcld 41874 | If a Grothendieck universe contains an element of a Scott's trick set, it contains the Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝜑 → 𝐺 ∈ Univ) & ⊢ (𝜑 → 𝐵 ∈ 𝐺) & ⊢ (𝜑 → 𝐵 ∈ Scott 𝐴) ⇒ ⊢ (𝜑 → Scott 𝐴 ∈ 𝐺) | ||
Syntax | ccoll 41875 | Extend class notation with the collection operation. |
class (𝐹 Coll 𝐴) | ||
Definition | df-coll 41876* | Define the collection operation. This is similar to the image set operation “, but it uses Scott's trick to ensure the output is always a set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝐹 Coll 𝐴) = ∪ 𝑥 ∈ 𝐴 Scott (𝐹 “ {𝑥}) | ||
Theorem | dfcoll2 41877* | Alternate definition of the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝐹 Coll 𝐴) = ∪ 𝑥 ∈ 𝐴 Scott {𝑦 ∣ 𝑥𝐹𝑦} | ||
Theorem | colleq12d 41878 | Equality theorem for the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝜑 → 𝐹 = 𝐺) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐹 Coll 𝐴) = (𝐺 Coll 𝐵)) | ||
Theorem | colleq1 41879 | Equality theorem for the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝐹 = 𝐺 → (𝐹 Coll 𝐴) = (𝐺 Coll 𝐴)) | ||
Theorem | colleq2 41880 | Equality theorem for the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝐴 = 𝐵 → (𝐹 Coll 𝐴) = (𝐹 Coll 𝐵)) | ||
Theorem | nfcoll 41881 | Bound-variable hypothesis builder for the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥(𝐹 Coll 𝐴) | ||
Theorem | collexd 41882 | The output of the collection operation is a set if the second input is. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐹 Coll 𝐴) ∈ V) | ||
Theorem | cpcolld 41883* | Property of the collection operation. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝜑 → 𝑥 ∈ 𝐴) & ⊢ (𝜑 → 𝑥𝐹𝑦) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦) | ||
Theorem | cpcoll2d 41884* | cpcolld 41883 with an extra existential quantifier. (Contributed by Rohan Ridenour, 12-Aug-2023.) |
⊢ (𝜑 → 𝑥 ∈ 𝐴) & ⊢ (𝜑 → ∃𝑦 𝑥𝐹𝑦) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ (𝐹 Coll 𝐴)𝑥𝐹𝑦) | ||
Theorem | grucollcld 41885 | A Grothendieck universe contains the output of a collection operation whenever its left input is a relation on the universe, and its right input is in the universe. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ (𝜑 → 𝐺 ∈ Univ) & ⊢ (𝜑 → 𝐹 ⊆ (𝐺 × 𝐺)) & ⊢ (𝜑 → 𝐴 ∈ 𝐺) ⇒ ⊢ (𝜑 → (𝐹 Coll 𝐴) ∈ 𝐺) | ||
Theorem | ismnu 41886* |
The hypothesis of this theorem defines a class M of sets that we
temporarily call "minimal universes", and which will turn out
in
grumnueq 41912 to be exactly Grothendicek universes.
Minimal universes are
sets which satisfy the predicate on 𝑦 in rr-groth 41924, except for the
𝑥
∈ 𝑦 clause.
A minimal universe is closed under subsets (mnussd 41888), powersets (mnupwd 41892), and an operation which is similar to a combination of collection and union (mnuop3d 41896), from which closure under pairing (mnuprd 41901), unions (mnuunid 41902), and function ranges (mnurnd 41908) can be deduced, from which equivalence with Grothendieck universes (grumnueq 41912) can be deduced. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} ⇒ ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∈ 𝑀 ↔ ∀𝑧 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑈 ∧ ∀𝑓∃𝑤 ∈ 𝑈 (𝒫 𝑧 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝑧 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))))) | ||
Theorem | mnuop123d 41887* | Operations of a minimal universe. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝒫 𝐴 ⊆ 𝑈 ∧ ∀𝑓∃𝑤 ∈ 𝑈 (𝒫 𝐴 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝑓) → ∃𝑢 ∈ 𝑓 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))))) | ||
Theorem | mnussd 41888* | Minimal universes are closed under subsets. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝑈) | ||
Theorem | mnuss2d 41889* | mnussd 41888 with arguments provided with an existential quantifier. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → ∃𝑥 ∈ 𝑈 𝐴 ⊆ 𝑥) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝑈) | ||
Theorem | mnu0eld 41890* | A nonempty minimal universe contains the empty set. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → ∅ ∈ 𝑈) | ||
Theorem | mnuop23d 41891* | Second and third operations of a minimal universe. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃𝑤 ∈ 𝑈 (𝒫 𝐴 ⊆ 𝑤 ∧ ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ 𝑈 (𝑖 ∈ 𝑣 ∧ 𝑣 ∈ 𝐹) → ∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)))) | ||
Theorem | mnupwd 41892* | Minimal universes are closed under powersets. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝒫 𝐴 ∈ 𝑈) | ||
Theorem | mnusnd 41893* | Minimal universes are closed under singletons. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → {𝐴} ∈ 𝑈) | ||
Theorem | mnuprssd 41894* | A minimal universe contains pairs of subsets of an element of the universe. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) & ⊢ (𝜑 → 𝐴 ⊆ 𝐶) & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) | ||
Theorem | mnuprss2d 41895* | Special case of mnuprssd 41894. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) & ⊢ 𝐴 ⊆ 𝐶 & ⊢ 𝐵 ⊆ 𝐶 ⇒ ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) | ||
Theorem | mnuop3d 41896* | Third operation of a minimal universe. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐹 ⊆ 𝑈) ⇒ ⊢ (𝜑 → ∃𝑤 ∈ 𝑈 ∀𝑖 ∈ 𝐴 (∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣 → ∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤))) | ||
Theorem | mnuprdlem1 41897* | Lemma for mnuprd 41901. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ 𝐹 = {{∅, {𝐴}}, {{∅}, {𝐵}}} & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) & ⊢ (𝜑 → ∀𝑖 ∈ {∅, {∅}}∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝑤) | ||
Theorem | mnuprdlem2 41898* | Lemma for mnuprd 41901. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ 𝐹 = {{∅, {𝐴}}, {{∅}, {𝐵}}} & ⊢ (𝜑 → 𝐵 ∈ 𝑈) & ⊢ (𝜑 → ¬ 𝐴 = ∅) & ⊢ (𝜑 → ∀𝑖 ∈ {∅, {∅}}∃𝑢 ∈ 𝐹 (𝑖 ∈ 𝑢 ∧ ∪ 𝑢 ⊆ 𝑤)) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝑤) | ||
Theorem | mnuprdlem3 41899* | Lemma for mnuprd 41901. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
⊢ 𝐹 = {{∅, {𝐴}}, {{∅}, {𝐵}}} & ⊢ Ⅎ𝑖𝜑 ⇒ ⊢ (𝜑 → ∀𝑖 ∈ {∅, {∅}}∃𝑣 ∈ 𝐹 𝑖 ∈ 𝑣) | ||
Theorem | mnuprdlem4 41900* | Lemma for mnuprd 41901. General case. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} & ⊢ 𝐹 = {{∅, {𝐴}}, {{∅}, {𝐵}}} & ⊢ (𝜑 → 𝑈 ∈ 𝑀) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) & ⊢ (𝜑 → ¬ 𝐴 = ∅) ⇒ ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |