Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-zrh | Structured version Visualization version GIF version |
Description: Define the unique homomorphism from the integers into a ring. This encodes the usual notation of 𝑛 = 1r + 1r + ... + 1r for integers (see also df-mulg 18746). (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
Ref | Expression |
---|---|
df-zrh | ⊢ ℤRHom = (𝑟 ∈ V ↦ ∪ (ℤring RingHom 𝑟)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | czrh 20746 | . 2 class ℤRHom | |
2 | vr | . . 3 setvar 𝑟 | |
3 | cvv 3437 | . . 3 class V | |
4 | czring 20715 | . . . . 5 class ℤring | |
5 | 2 | cv 1538 | . . . . 5 class 𝑟 |
6 | crh 20001 | . . . . 5 class RingHom | |
7 | 4, 5, 6 | co 7307 | . . . 4 class (ℤring RingHom 𝑟) |
8 | 7 | cuni 4844 | . . 3 class ∪ (ℤring RingHom 𝑟) |
9 | 2, 3, 8 | cmpt 5164 | . 2 class (𝑟 ∈ V ↦ ∪ (ℤring RingHom 𝑟)) |
10 | 1, 9 | wceq 1539 | 1 wff ℤRHom = (𝑟 ∈ V ↦ ∪ (ℤring RingHom 𝑟)) |
Colors of variables: wff setvar class |
This definition is referenced by: zrhval 20754 |
Copyright terms: Public domain | W3C validator |