Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-zrh Structured version   Visualization version   GIF version

Definition df-zrh 20201
 Description: Define the unique homomorphism from the integers into a ring. This encodes the usual notation of 𝑛 = 1r + 1r + ... + 1r for integers (see also df-mulg 18221). (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.)
Assertion
Ref Expression
df-zrh ℤRHom = (𝑟 ∈ V ↦ (ℤring RingHom 𝑟))

Detailed syntax breakdown of Definition df-zrh
StepHypRef Expression
1 czrh 20197 . 2 class ℤRHom
2 vr . . 3 setvar 𝑟
3 cvv 3444 . . 3 class V
4 zring 20167 . . . . 5 class ring
52cv 1537 . . . . 5 class 𝑟
6 crh 19464 . . . . 5 class RingHom
74, 5, 6co 7139 . . . 4 class (ℤring RingHom 𝑟)
87cuni 4803 . . 3 class (ℤring RingHom 𝑟)
92, 3, 8cmpt 5113 . 2 class (𝑟 ∈ V ↦ (ℤring RingHom 𝑟))
101, 9wceq 1538 1 wff ℤRHom = (𝑟 ∈ V ↦ (ℤring RingHom 𝑟))
 Colors of variables: wff setvar class This definition is referenced by:  zrhval  20205
 Copyright terms: Public domain W3C validator