| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-zrh | Structured version Visualization version GIF version | ||
| Description: Define the unique homomorphism from the integers into a ring. This encodes the usual notation of 𝑛 = 1r + 1r + ... + 1r for integers (see also df-mulg 19086). (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
| Ref | Expression |
|---|---|
| df-zrh | ⊢ ℤRHom = (𝑟 ∈ V ↦ ∪ (ℤring RingHom 𝑟)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | czrh 21510 | . 2 class ℤRHom | |
| 2 | vr | . . 3 setvar 𝑟 | |
| 3 | cvv 3480 | . . 3 class V | |
| 4 | czring 21457 | . . . . 5 class ℤring | |
| 5 | 2 | cv 1539 | . . . . 5 class 𝑟 |
| 6 | crh 20469 | . . . . 5 class RingHom | |
| 7 | 4, 5, 6 | co 7431 | . . . 4 class (ℤring RingHom 𝑟) |
| 8 | 7 | cuni 4907 | . . 3 class ∪ (ℤring RingHom 𝑟) |
| 9 | 2, 3, 8 | cmpt 5225 | . 2 class (𝑟 ∈ V ↦ ∪ (ℤring RingHom 𝑟)) |
| 10 | 1, 9 | wceq 1540 | 1 wff ℤRHom = (𝑟 ∈ V ↦ ∪ (ℤring RingHom 𝑟)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: zrhval 21518 |
| Copyright terms: Public domain | W3C validator |