| Metamath
Proof Explorer Theorem List (p. 211 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | lsmsp2 21001 | Subspace sum of spans of subsets is the span of their union. (spanuni 31480 analog.) (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 21-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ 𝑈 ⊆ 𝑉) → ((𝑁‘𝑇) ⊕ (𝑁‘𝑈)) = (𝑁‘(𝑇 ∪ 𝑈))) | ||
| Theorem | lsmssspx 21002 | Subspace sum (in its extended domain) is a subset of the span of the union of its arguments. (Contributed by NM, 6-Aug-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ (𝜑 → 𝑇 ⊆ 𝑉) & ⊢ (𝜑 → 𝑈 ⊆ 𝑉) & ⊢ (𝜑 → 𝑊 ∈ LMod) ⇒ ⊢ (𝜑 → (𝑇 ⊕ 𝑈) ⊆ (𝑁‘(𝑇 ∪ 𝑈))) | ||
| Theorem | lsmpr 21003 | The span of a pair of vectors equals the sum of the spans of their singletons. (Contributed by NM, 13-Jan-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) = ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌}))) | ||
| Theorem | lsppreli 21004 | A vector expressed as a sum belongs to the span of its components. (Contributed by NM, 9-Apr-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝐵 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) ∈ (𝑁‘{𝑋, 𝑌})) | ||
| Theorem | lsmelpr 21005 | Two ways to say that a vector belongs to the span of a pair of vectors. (Contributed by NM, 14-Jan-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑋}) ⊆ ((𝑁‘{𝑌}) ⊕ (𝑁‘{𝑍})))) | ||
| Theorem | lsppr0 21006 | The span of a vector paired with zero equals the span of the singleton of the vector. (Contributed by NM, 29-Aug-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋, 0 }) = (𝑁‘{𝑋})) | ||
| Theorem | lsppr 21007* | Span of a pair of vectors. (Contributed by NM, 22-Aug-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) = {𝑣 ∣ ∃𝑘 ∈ 𝐾 ∃𝑙 ∈ 𝐾 𝑣 = ((𝑘 · 𝑋) + (𝑙 · 𝑌))}) | ||
| Theorem | lspprel 21008* | Member of the span of a pair of vectors. (Contributed by NM, 10-Apr-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑍 ∈ (𝑁‘{𝑋, 𝑌}) ↔ ∃𝑘 ∈ 𝐾 ∃𝑙 ∈ 𝐾 𝑍 = ((𝑘 · 𝑋) + (𝑙 · 𝑌)))) | ||
| Theorem | lspprabs 21009 | Absorption of vector sum into span of pair. (Contributed by NM, 27-Apr-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋, (𝑋 + 𝑌)}) = (𝑁‘{𝑋, 𝑌})) | ||
| Theorem | lspvadd 21010 | The span of a vector sum is included in the span of its arguments. (Contributed by NM, 22-Feb-2014.) (Proof shortened by Mario Carneiro, 21-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘{(𝑋 + 𝑌)}) ⊆ (𝑁‘{𝑋, 𝑌})) | ||
| Theorem | lspsntri 21011 | Triangle-type inequality for span of a singleton. (Contributed by NM, 24-Feb-2014.) (Revised by Mario Carneiro, 21-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘{(𝑋 + 𝑌)}) ⊆ ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌}))) | ||
| Theorem | lspsntrim 21012 | Triangle-type inequality for span of a singleton of vector difference. (Contributed by NM, 25-Apr-2014.) (Revised by Mario Carneiro, 21-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑁‘{(𝑋 − 𝑌)}) ⊆ ((𝑁‘{𝑋}) ⊕ (𝑁‘{𝑌}))) | ||
| Theorem | lbspropd 21013* | If two structures have the same components (properties), they have the same set of bases. (Contributed by Mario Carneiro, 9-Feb-2015.) (Revised by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 24-Apr-2024.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → 𝐵 ⊆ 𝑊) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) ∈ 𝑊) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) & ⊢ 𝐹 = (Scalar‘𝐾) & ⊢ 𝐺 = (Scalar‘𝐿) & ⊢ (𝜑 → 𝑃 = (Base‘𝐹)) & ⊢ (𝜑 → 𝑃 = (Base‘𝐺)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (𝑥(+g‘𝐹)𝑦) = (𝑥(+g‘𝐺)𝑦)) & ⊢ (𝜑 → 𝐾 ∈ 𝑋) & ⊢ (𝜑 → 𝐿 ∈ 𝑌) ⇒ ⊢ (𝜑 → (LBasis‘𝐾) = (LBasis‘𝐿)) | ||
| Theorem | pj1lmhm 21014 | The left projection function is a linear operator. (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐿 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑃 = (proj1‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑇 ∈ 𝐿) & ⊢ (𝜑 → 𝑈 ∈ 𝐿) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) ⇒ ⊢ (𝜑 → (𝑇𝑃𝑈) ∈ ((𝑊 ↾s (𝑇 ⊕ 𝑈)) LMHom 𝑊)) | ||
| Theorem | pj1lmhm2 21015 | The left projection function is a linear operator. (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝐿 = (LSubSp‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑃 = (proj1‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑇 ∈ 𝐿) & ⊢ (𝜑 → 𝑈 ∈ 𝐿) & ⊢ (𝜑 → (𝑇 ∩ 𝑈) = { 0 }) ⇒ ⊢ (𝜑 → (𝑇𝑃𝑈) ∈ ((𝑊 ↾s (𝑇 ⊕ 𝑈)) LMHom (𝑊 ↾s 𝑇))) | ||
| Syntax | clvec 21016 | Extend class notation with class of all left vector spaces. |
| class LVec | ||
| Definition | df-lvec 21017 | Define the class of all left vector spaces. A left vector space over a division ring is an Abelian group (vectors) together with a division ring (scalars) and a left scalar product connecting them. Some authors call this a "left module over a division ring", reserving "vector space" for those where the division ring is commutative, i.e., is a field. (Contributed by NM, 11-Nov-2013.) |
| ⊢ LVec = {𝑓 ∈ LMod ∣ (Scalar‘𝑓) ∈ DivRing} | ||
| Theorem | islvec 21018 | The predicate "is a left vector space". (Contributed by NM, 11-Nov-2013.) |
| ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ LVec ↔ (𝑊 ∈ LMod ∧ 𝐹 ∈ DivRing)) | ||
| Theorem | lvecdrng 21019 | The set of scalars of a left vector space is a division ring. (Contributed by NM, 17-Apr-2014.) |
| ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ LVec → 𝐹 ∈ DivRing) | ||
| Theorem | lveclmod 21020 | A left vector space is a left module. (Contributed by NM, 9-Dec-2013.) |
| ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | ||
| Theorem | lveclmodd 21021 | A vector space is a left module. (Contributed by SN, 16-May-2024.) |
| ⊢ (𝜑 → 𝑊 ∈ LVec) ⇒ ⊢ (𝜑 → 𝑊 ∈ LMod) | ||
| Theorem | lvecgrpd 21022 | A vector space is a group. (Contributed by SN, 16-May-2024.) |
| ⊢ (𝜑 → 𝑊 ∈ LVec) ⇒ ⊢ (𝜑 → 𝑊 ∈ Grp) | ||
| Theorem | lsslvec 21023 | A vector subspace is a vector space. (Contributed by NM, 14-Mar-2015.) |
| ⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑆 = (LSubSp‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ LVec) | ||
| Theorem | lmhmlvec 21024 | The property for modules to be vector spaces is invariant under module isomorphism. (Contributed by Steven Nguyen, 15-Aug-2023.) |
| ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝑆 ∈ LVec ↔ 𝑇 ∈ LVec)) | ||
| Theorem | lvecvs0or 21025 | If a scalar product is zero, one of its factors must be zero. (hvmul0or 30961 analog.) (Contributed by NM, 2-Jul-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝑂 = (0g‘𝐹) & ⊢ 0 = (0g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐴 · 𝑋) = 0 ↔ (𝐴 = 𝑂 ∨ 𝑋 = 0 ))) | ||
| Theorem | lvecvsn0 21026 | A scalar product is nonzero iff both of its factors are nonzero. (Contributed by NM, 3-Jan-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 𝑂 = (0g‘𝐹) & ⊢ 0 = (0g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝐴 · 𝑋) ≠ 0 ↔ (𝐴 ≠ 𝑂 ∧ 𝑋 ≠ 0 ))) | ||
| Theorem | lssvs0or 21027 | If a scalar product belongs to a subspace, either the scalar component is zero or the vector component also belongs to the subspace. (Contributed by NM, 5-Apr-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 0 = (0g‘𝐹) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) ⇒ ⊢ (𝜑 → ((𝐴 · 𝑋) ∈ 𝑈 ↔ (𝐴 = 0 ∨ 𝑋 ∈ 𝑈))) | ||
| Theorem | lvecvscan 21028 | Cancellation law for scalar multiplication. (hvmulcan 31008 analog.) (Contributed by NM, 2-Jul-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 0 = (0g‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ≠ 0 ) ⇒ ⊢ (𝜑 → ((𝐴 · 𝑋) = (𝐴 · 𝑌) ↔ 𝑋 = 𝑌)) | ||
| Theorem | lvecvscan2 21029 | Cancellation law for scalar multiplication. (hvmulcan2 31009 analog.) (Contributed by NM, 2-Jul-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 0 = (0g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝐵 ∈ 𝐾) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ≠ 0 ) ⇒ ⊢ (𝜑 → ((𝐴 · 𝑋) = (𝐵 · 𝑋) ↔ 𝐴 = 𝐵)) | ||
| Theorem | lvecinv 21030 | Invert coefficient of scalar product. (Contributed by NM, 11-Apr-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 0 = (0g‘𝐹) & ⊢ 𝐼 = (invr‘𝐹) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐴 ∈ (𝐾 ∖ { 0 })) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋 = (𝐴 · 𝑌) ↔ 𝑌 = ((𝐼‘𝐴) · 𝑋))) | ||
| Theorem | lspsnvs 21031 | A nonzero scalar product does not change the span of a singleton. (spansncol 31504 analog.) (Contributed by NM, 23-Apr-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ 0 = (0g‘𝐹) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(𝑅 · 𝑋)}) = (𝑁‘{𝑋})) | ||
| Theorem | lspsneleq 21032 | Membership relation that implies equality of spans. (spansneleq 31506 analog.) (Contributed by NM, 4-Jul-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑋})) & ⊢ (𝜑 → 𝑌 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑋})) | ||
| Theorem | lspsncmp 21033 | Comparable spans of nonzero singletons are equal. (Contributed by NM, 27-Apr-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌}) ↔ (𝑁‘{𝑋}) = (𝑁‘{𝑌}))) | ||
| Theorem | lspsnne1 21034 | Two ways to express that vectors have different spans. (Contributed by NM, 28-May-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) ⇒ ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌})) | ||
| Theorem | lspsnne2 21035 | Two ways to express that vectors have different spans. (Contributed by NM, 20-May-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌})) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | ||
| Theorem | lspsnnecom 21036 | Swap two vectors with different spans. (Contributed by NM, 20-May-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌})) ⇒ ⊢ (𝜑 → ¬ 𝑌 ∈ (𝑁‘{𝑋})) | ||
| Theorem | lspabs2 21037 | Absorption law for span of vector sum. (Contributed by NM, 30-Apr-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{(𝑋 + 𝑌)})) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) | ||
| Theorem | lspabs3 21038 | Absorption law for span of vector sum. (Contributed by NM, 30-Apr-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → (𝑋 + 𝑌) ≠ 0 ) & ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{(𝑋 + 𝑌)})) | ||
| Theorem | lspsneq 21039* | Equal spans of singletons must have proportional vectors. See lspsnss2 20918 for comparable span version. TODO: can proof be shortened? (Contributed by NM, 21-Mar-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃𝑘 ∈ (𝐾 ∖ { 0 })𝑋 = (𝑘 · 𝑌))) | ||
| Theorem | lspsneu 21040* | Nonzero vectors with equal singleton spans have a unique proportionality constant. (Contributed by NM, 31-May-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝑂 = (0g‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃!𝑘 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑘 · 𝑌))) | ||
| Theorem | ellspsn4 21041 | A member of the span of the singleton of a vector is a member of a subspace containing the vector. (elspansn4 31509 analog.) (Contributed by NM, 4-Jul-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑋})) & ⊢ (𝜑 → 𝑌 ≠ 0 ) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ 𝑌 ∈ 𝑈)) | ||
| Theorem | lspdisj 21042 | The span of a vector not in a subspace is disjoint with the subspace. (Contributed by NM, 6-Apr-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) ⇒ ⊢ (𝜑 → ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 }) | ||
| Theorem | lspdisjb 21043 | A nonzero vector is not in a subspace iff its span is disjoint with the subspace. (Contributed by NM, 23-Apr-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → (¬ 𝑋 ∈ 𝑈 ↔ ((𝑁‘{𝑋}) ∩ 𝑈) = { 0 })) | ||
| Theorem | lspdisj2 21044 | Unequal spans are disjoint (share only the zero vector). (Contributed by NM, 22-Mar-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) ⇒ ⊢ (𝜑 → ((𝑁‘{𝑋}) ∩ (𝑁‘{𝑌})) = { 0 }) | ||
| Theorem | lspfixed 21045* | Show membership in the span of the sum of two vectors, one of which (𝑌) is fixed in advance. (Contributed by NM, 27-May-2015.) (Revised by AV, 12-Jul-2022.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌})) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑍})) & ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ ((𝑁‘{𝑍}) ∖ { 0 })𝑋 ∈ (𝑁‘{(𝑌 + 𝑧)})) | ||
| Theorem | lspexch 21046 | Exchange property for span of a pair. TODO: see if a version with Y,Z and X,Z reversed will shorten proofs (analogous to lspexchn1 21047 versus lspexchn2 21048); look for lspexch 21046 and prcom 4699 in same proof. TODO: would a hypothesis of ¬ 𝑋 ∈ (𝑁‘{𝑍}) instead of (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}) be better overall? This would be shorter and also satisfy the 𝑋 ≠ 0 condition. Here and also lspindp* and all proofs affected by them (all in NM's mathbox); there are 58 hypotheses with the ≠ pattern as of 24-May-2015. (Contributed by NM, 11-Apr-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})) & ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) ⇒ ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) | ||
| Theorem | lspexchn1 21047 | Exchange property for span of a pair with negated membership. TODO: look at uses of lspexch 21046 to see if this will shorten proofs. (Contributed by NM, 20-May-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑌 ∈ (𝑁‘{𝑍})) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) ⇒ ⊢ (𝜑 → ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})) | ||
| Theorem | lspexchn2 21048 | Exchange property for span of a pair with negated membership. TODO: look at uses of lspexch 21046 to see if this will shorten proofs. (Contributed by NM, 24-May-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑌 ∈ (𝑁‘{𝑍})) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑍, 𝑌})) ⇒ ⊢ (𝜑 → ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑋})) | ||
| Theorem | lspindpi 21049 | Partial independence property. (Contributed by NM, 23-Apr-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) ⇒ ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))) | ||
| Theorem | lspindp1 21050 | Alternate way to say 3 vectors are mutually independent (swap 1st and 2nd). (Contributed by NM, 11-Apr-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌})) ⇒ ⊢ (𝜑 → ((𝑁‘{𝑍}) ≠ (𝑁‘{𝑌}) ∧ ¬ 𝑋 ∈ (𝑁‘{𝑍, 𝑌}))) | ||
| Theorem | lspindp2l 21051 | Alternate way to say 3 vectors are mutually independent (rotate left). (Contributed by NM, 10-May-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌})) ⇒ ⊢ (𝜑 → ((𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}) ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))) | ||
| Theorem | lspindp2 21052 | Alternate way to say 3 vectors are mutually independent (rotate right). (Contributed by NM, 12-Apr-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌})) ⇒ ⊢ (𝜑 → ((𝑁‘{𝑍}) ≠ (𝑁‘{𝑋}) ∧ ¬ 𝑌 ∈ (𝑁‘{𝑍, 𝑋}))) | ||
| Theorem | lspindp3 21053 | Independence of 2 vectors is preserved by vector sum. (Contributed by NM, 26-Apr-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑋 + 𝑌)})) | ||
| Theorem | lspindp4 21054 | (Partial) independence of 3 vectors is preserved by vector sum. (Contributed by NM, 26-Apr-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌})) ⇒ ⊢ (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑋, (𝑋 + 𝑌)})) | ||
| Theorem | lvecindp 21055 | Compute the 𝑋 coefficient in a sum with an independent vector 𝑋 (first conjunct), which can then be removed to continue with the remaining vectors summed in expressions 𝑌 and 𝑍 (second conjunct). Typically, 𝑈 is the span of the remaining vectors. (Contributed by NM, 5-Apr-2015.) (Revised by Mario Carneiro, 21-Apr-2016.) (Proof shortened by AV, 19-Jul-2022.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝑋 ∈ 𝑈) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝐵 ∈ 𝐾) & ⊢ (𝜑 → ((𝐴 · 𝑋) + 𝑌) = ((𝐵 · 𝑋) + 𝑍)) ⇒ ⊢ (𝜑 → (𝐴 = 𝐵 ∧ 𝑌 = 𝑍)) | ||
| Theorem | lvecindp2 21056 | Sums of independent vectors must have equal coefficients. (Contributed by NM, 22-Mar-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ + = (+g‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝐴 ∈ 𝐾) & ⊢ (𝜑 → 𝐵 ∈ 𝐾) & ⊢ (𝜑 → 𝐶 ∈ 𝐾) & ⊢ (𝜑 → 𝐷 ∈ 𝐾) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) & ⊢ (𝜑 → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((𝐶 · 𝑋) + (𝐷 · 𝑌))) ⇒ ⊢ (𝜑 → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
| Theorem | lspsnsubn0 21057 | Unequal singleton spans imply nonzero vector subtraction. (Contributed by NM, 19-Mar-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ − = (-g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) ⇒ ⊢ (𝜑 → (𝑋 − 𝑌) ≠ 0 ) | ||
| Theorem | lsmcv 21058 | Subspace sum has the covering property (using spans of singletons to represent atoms). Similar to Exercise 5 of [Kalmbach] p. 153. (spansncvi 31588 analog.) TODO: ugly proof; can it be shortened? (Contributed by NM, 2-Oct-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ ⊕ = (LSSum‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑇 ∈ 𝑆) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ ((𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ (𝑇 ⊕ (𝑁‘{𝑋}))) → 𝑈 = (𝑇 ⊕ (𝑁‘{𝑋}))) | ||
| Theorem | lspsolvlem 21059* | Lemma for lspsolv 21060. (Contributed by Mario Carneiro, 25-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐵 = (Base‘𝐹) & ⊢ + = (+g‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝑄 = {𝑧 ∈ 𝑉 ∣ ∃𝑟 ∈ 𝐵 (𝑧 + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴)} & ⊢ (𝜑 → 𝑊 ∈ LMod) & ⊢ (𝜑 → 𝐴 ⊆ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ (𝑁‘(𝐴 ∪ {𝑌}))) ⇒ ⊢ (𝜑 → ∃𝑟 ∈ 𝐵 (𝑋 + (𝑟 · 𝑌)) ∈ (𝑁‘𝐴)) | ||
| Theorem | lspsolv 21060 | If 𝑋 is in the span of 𝐴 ∪ {𝑌} but not 𝐴, then 𝑌 is in the span of 𝐴 ∪ {𝑋}. (Contributed by Mario Carneiro, 25-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ (𝐴 ⊆ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ ((𝑁‘(𝐴 ∪ {𝑌})) ∖ (𝑁‘𝐴)))) → 𝑌 ∈ (𝑁‘(𝐴 ∪ {𝑋}))) | ||
| Theorem | lssacsex 21061* | In a vector space, subspaces form an algebraic closure system whose closure operator has the exchange property. Strengthening of lssacs 20880 by lspsolv 21060. (Contributed by David Moews, 1-May-2017.) |
| ⊢ 𝐴 = (LSubSp‘𝑊) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝑋 = (Base‘𝑊) ⇒ ⊢ (𝑊 ∈ LVec → (𝐴 ∈ (ACS‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))) | ||
| Theorem | lspsnat 21062 | There is no subspace strictly between the zero subspace and the span of a vector (i.e. a 1-dimensional subspace is an atom). (h1datomi 31517 analog.) (Contributed by NM, 20-Apr-2014.) (Proof shortened by Mario Carneiro, 22-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ (((𝑊 ∈ LVec ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ 𝑉) ∧ 𝑈 ⊆ (𝑁‘{𝑋})) → (𝑈 = (𝑁‘{𝑋}) ∨ 𝑈 = { 0 })) | ||
| Theorem | lspsncv0 21063* | The span of a singleton covers the zero subspace, using Definition 3.2.18 of [PtakPulmannova] p. 68 for "covers".) (Contributed by NM, 12-Aug-2014.) (Revised by AV, 13-Jul-2022.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ¬ ∃𝑦 ∈ 𝑆 ({ 0 } ⊊ 𝑦 ∧ 𝑦 ⊊ (𝑁‘{𝑋}))) | ||
| Theorem | lsppratlem1 21064 | Lemma for lspprat 21070. Let 𝑥 ∈ (𝑈 ∖ {0}) (if there is no such 𝑥 then 𝑈 is the zero subspace), and let 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})) (assuming the conclusion is false). The goal is to write 𝑋, 𝑌 in terms of 𝑥, 𝑦, which would normally be done by solving the system of linear equations. The span equivalent of this process is lspsolv 21060 (hence the name), which we use extensively below. In this lemma, we show that since 𝑥 ∈ (𝑁‘{𝑋, 𝑌}), either 𝑥 ∈ (𝑁‘{𝑌}) or 𝑋 ∈ (𝑁‘{𝑥, 𝑌}). (Contributed by NM, 29-Aug-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) & ⊢ 0 = (0g‘𝑊) & ⊢ (𝜑 → 𝑥 ∈ (𝑈 ∖ { 0 })) & ⊢ (𝜑 → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) ⇒ ⊢ (𝜑 → (𝑥 ∈ (𝑁‘{𝑌}) ∨ 𝑋 ∈ (𝑁‘{𝑥, 𝑌}))) | ||
| Theorem | lsppratlem2 21065 | Lemma for lspprat 21070. Show that if 𝑋 and 𝑌 are both in (𝑁‘{𝑥, 𝑦}) (which will be our goal for each of the two cases above), then (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈, contradicting the hypothesis for 𝑈. (Contributed by NM, 29-Aug-2014.) (Revised by Mario Carneiro, 5-Sep-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) & ⊢ 0 = (0g‘𝑊) & ⊢ (𝜑 → 𝑥 ∈ (𝑈 ∖ { 0 })) & ⊢ (𝜑 → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) & ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑥, 𝑦})) & ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑥, 𝑦})) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈) | ||
| Theorem | lsppratlem3 21066 | Lemma for lspprat 21070. In the first case of lsppratlem1 21064, since 𝑥 ∉ (𝑁‘∅), also 𝑌 ∈ (𝑁‘{𝑥}), and since 𝑦 ∈ (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑋, 𝑥}) and 𝑦 ∉ (𝑁‘{𝑥}), we have 𝑋 ∈ (𝑁‘{𝑥, 𝑦}) as desired. (Contributed by NM, 29-Aug-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) & ⊢ 0 = (0g‘𝑊) & ⊢ (𝜑 → 𝑥 ∈ (𝑈 ∖ { 0 })) & ⊢ (𝜑 → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) & ⊢ (𝜑 → 𝑥 ∈ (𝑁‘{𝑌})) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) | ||
| Theorem | lsppratlem4 21067 | Lemma for lspprat 21070. In the second case of lsppratlem1 21064, 𝑦 ∈ (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑌}) and 𝑦 ∉ (𝑁‘{𝑥}) implies 𝑌 ∈ (𝑁‘{𝑥, 𝑦}) and thus 𝑋 ∈ (𝑁‘{𝑥, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑦}) as well. (Contributed by NM, 29-Aug-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) & ⊢ 0 = (0g‘𝑊) & ⊢ (𝜑 → 𝑥 ∈ (𝑈 ∖ { 0 })) & ⊢ (𝜑 → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) & ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑥, 𝑌})) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝑁‘{𝑥, 𝑦}) ∧ 𝑌 ∈ (𝑁‘{𝑥, 𝑦}))) | ||
| Theorem | lsppratlem5 21068 | Lemma for lspprat 21070. Combine the two cases and show a contradiction to 𝑈 ⊊ (𝑁‘{𝑋, 𝑌}) under the assumptions on 𝑥 and 𝑦. (Contributed by NM, 29-Aug-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) & ⊢ 0 = (0g‘𝑊) & ⊢ (𝜑 → 𝑥 ∈ (𝑈 ∖ { 0 })) & ⊢ (𝜑 → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) ⇒ ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈) | ||
| Theorem | lsppratlem6 21069 | Lemma for lspprat 21070. Negating the assumption on 𝑦, we arrive close to the desired conclusion. (Contributed by NM, 29-Aug-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ (𝜑 → (𝑥 ∈ (𝑈 ∖ { 0 }) → 𝑈 = (𝑁‘{𝑥}))) | ||
| Theorem | lspprat 21070* | A proper subspace of the span of a pair of vectors is the span of a singleton (an atom) or the zero subspace (if 𝑧 is zero). Proof suggested by Mario Carneiro, 28-Aug-2014. (Contributed by NM, 29-Aug-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑆 = (LSubSp‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ 𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) ⇒ ⊢ (𝜑 → ∃𝑧 ∈ 𝑉 𝑈 = (𝑁‘{𝑧})) | ||
| Theorem | islbs2 21071* | An equivalent formulation of the basis predicate in a vector space: a subset is a basis iff no element is in the span of the rest of the set. (Contributed by Mario Carneiro, 14-Jan-2015.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐽 = (LBasis‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ (𝑊 ∈ LVec → (𝐵 ∈ 𝐽 ↔ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑥 ∈ 𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥}))))) | ||
| Theorem | islbs3 21072* | An equivalent formulation of the basis predicate: a subset is a basis iff it is a minimal spanning set. (Contributed by Mario Carneiro, 25-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐽 = (LBasis‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ (𝑊 ∈ LVec → (𝐵 ∈ 𝐽 ↔ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑠(𝑠 ⊊ 𝐵 → (𝑁‘𝑠) ⊊ 𝑉)))) | ||
| Theorem | lbsacsbs 21073 | Being a basis in a vector space is equivalent to being a basis in the associated algebraic closure system. Equivalent to islbs2 21071. (Contributed by David Moews, 1-May-2017.) |
| ⊢ 𝐴 = (LSubSp‘𝑊) & ⊢ 𝑁 = (mrCls‘𝐴) & ⊢ 𝑋 = (Base‘𝑊) & ⊢ 𝐼 = (mrInd‘𝐴) & ⊢ 𝐽 = (LBasis‘𝑊) ⇒ ⊢ (𝑊 ∈ LVec → (𝑆 ∈ 𝐽 ↔ (𝑆 ∈ 𝐼 ∧ (𝑁‘𝑆) = 𝑋))) | ||
| Theorem | lvecdim 21074 | The dimension theorem for vector spaces: any two bases of the same vector space are equinumerous. Proven by using lssacsex 21061 and lbsacsbs 21073 to show that being a basis for a vector space is equivalent to being a basis for the associated algebraic closure system, and then using acsexdimd 18525. (Contributed by David Moews, 1-May-2017.) |
| ⊢ 𝐽 = (LBasis‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽) → 𝑆 ≈ 𝑇) | ||
| Theorem | lbsextlem1 21075* | Lemma for lbsext 21080. The set 𝑆 is the set of all linearly independent sets containing 𝐶; we show here that it is nonempty. (Contributed by Mario Carneiro, 25-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐽 = (LBasis‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐶 ⊆ 𝑉) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) & ⊢ 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))} ⇒ ⊢ (𝜑 → 𝑆 ≠ ∅) | ||
| Theorem | lbsextlem2 21076* | Lemma for lbsext 21080. Since 𝐴 is a chain (actually, we only need it to be closed under binary union), the union 𝑇 of the spans of each individual element of 𝐴 is a subspace, and it contains all of ∪ 𝐴 (except for our target vector 𝑥- we are trying to make 𝑥 a linear combination of all the other vectors in some set from 𝐴). (Contributed by Mario Carneiro, 25-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐽 = (LBasis‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐶 ⊆ 𝑉) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) & ⊢ 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))} & ⊢ 𝑃 = (LSubSp‘𝑊) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → [⊊] Or 𝐴) & ⊢ 𝑇 = ∪ 𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ⇒ ⊢ (𝜑 → (𝑇 ∈ 𝑃 ∧ (∪ 𝐴 ∖ {𝑥}) ⊆ 𝑇)) | ||
| Theorem | lbsextlem3 21077* | Lemma for lbsext 21080. A chain in 𝑆 has an upper bound in 𝑆. (Contributed by Mario Carneiro, 25-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐽 = (LBasis‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐶 ⊆ 𝑉) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) & ⊢ 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))} & ⊢ 𝑃 = (LSubSp‘𝑊) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → [⊊] Or 𝐴) & ⊢ 𝑇 = ∪ 𝑢 ∈ 𝐴 (𝑁‘(𝑢 ∖ {𝑥})) ⇒ ⊢ (𝜑 → ∪ 𝐴 ∈ 𝑆) | ||
| Theorem | lbsextlem4 21078* | Lemma for lbsext 21080. lbsextlem3 21077 satisfies the conditions for the application of Zorn's lemma zorn 10467 (thus invoking AC), and so there is a maximal linearly independent set extending 𝐶. Here we prove that such a set is a basis. (Contributed by Mario Carneiro, 25-Jun-2014.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐽 = (LBasis‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝐶 ⊆ 𝑉) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) & ⊢ 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))} & ⊢ (𝜑 → 𝒫 𝑉 ∈ dom card) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ 𝐽 𝐶 ⊆ 𝑠) | ||
| Theorem | lbsextg 21079* | For any linearly independent subset 𝐶 of 𝑉, there is a basis containing the vectors in 𝐶. (Contributed by Mario Carneiro, 17-May-2015.) |
| ⊢ 𝐽 = (LBasis‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ (((𝑊 ∈ LVec ∧ 𝒫 𝑉 ∈ dom card) ∧ 𝐶 ⊆ 𝑉 ∧ ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → ∃𝑠 ∈ 𝐽 𝐶 ⊆ 𝑠) | ||
| Theorem | lbsext 21080* | For any linearly independent subset 𝐶 of 𝑉, there is a basis containing the vectors in 𝐶. (Contributed by Mario Carneiro, 25-Jun-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
| ⊢ 𝐽 = (LBasis‘𝑊) & ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ 𝐶 ⊆ 𝑉 ∧ ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) → ∃𝑠 ∈ 𝐽 𝐶 ⊆ 𝑠) | ||
| Theorem | lbsexg 21081 | Every vector space has a basis. This theorem is an AC equivalent; this is the forward implication. (Contributed by Mario Carneiro, 17-May-2015.) |
| ⊢ 𝐽 = (LBasis‘𝑊) ⇒ ⊢ ((CHOICE ∧ 𝑊 ∈ LVec) → 𝐽 ≠ ∅) | ||
| Theorem | lbsex 21082 | Every vector space has a basis. This theorem is an AC equivalent. (Contributed by Mario Carneiro, 25-Jun-2014.) |
| ⊢ 𝐽 = (LBasis‘𝑊) ⇒ ⊢ (𝑊 ∈ LVec → 𝐽 ≠ ∅) | ||
| Theorem | lvecprop2d 21083* | If two structures have the same components (properties), one is a left vector space iff the other one is. This version of lvecpropd 21084 also breaks up the components of the scalar ring. (Contributed by Mario Carneiro, 27-Jun-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ 𝐹 = (Scalar‘𝐾) & ⊢ 𝐺 = (Scalar‘𝐿) & ⊢ (𝜑 → 𝑃 = (Base‘𝐹)) & ⊢ (𝜑 → 𝑃 = (Base‘𝐺)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (𝑥(+g‘𝐹)𝑦) = (𝑥(+g‘𝐺)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (𝑥(.r‘𝐹)𝑦) = (𝑥(.r‘𝐺)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ LVec ↔ 𝐿 ∈ LVec)) | ||
| Theorem | lvecpropd 21084* | If two structures have the same components (properties), one is a left vector space iff the other one is. (Contributed by Mario Carneiro, 27-Jun-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ (𝜑 → 𝐹 = (Scalar‘𝐾)) & ⊢ (𝜑 → 𝐹 = (Scalar‘𝐿)) & ⊢ 𝑃 = (Base‘𝐹) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ LVec ↔ 𝐿 ∈ LVec)) | ||
| Syntax | csra 21085 | Extend class notation with the subring algebra generator. |
| class subringAlg | ||
| Syntax | crglmod 21086 | Extend class notation with the left module induced by a ring over itself. |
| class ringLMod | ||
| Definition | df-sra 21087* | Any ring can be regarded as a left algebra over any of its subrings. The function subringAlg associates with any ring and any of its subrings the left algebra consisting in the ring itself regarded as a left algebra over the subring. It has an inner product which is simply the ring product. (Contributed by Mario Carneiro, 27-Nov-2014.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ subringAlg = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ (((𝑤 sSet 〈(Scalar‘ndx), (𝑤 ↾s 𝑠)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑤)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑤)〉))) | ||
| Definition | df-rgmod 21088 | Any ring can be regarded as a left algebra over itself. The function ringLMod associates with any ring the left algebra consisting in the ring itself regarded as a left algebra over itself. It has an inner product which is simply the ring product. (Contributed by Stefan O'Rear, 6-Dec-2014.) |
| ⊢ ringLMod = (𝑤 ∈ V ↦ ((subringAlg ‘𝑤)‘(Base‘𝑤))) | ||
| Theorem | sraval 21089 | Lemma for srabase 21091 through sravsca 21095. (Contributed by Mario Carneiro, 27-Nov-2014.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ ((𝑊 ∈ 𝑉 ∧ 𝑆 ⊆ (Base‘𝑊)) → ((subringAlg ‘𝑊)‘𝑆) = (((𝑊 sSet 〈(Scalar‘ndx), (𝑊 ↾s 𝑆)〉) sSet 〈( ·𝑠 ‘ndx), (.r‘𝑊)〉) sSet 〈(·𝑖‘ndx), (.r‘𝑊)〉)) | ||
| Theorem | sralem 21090 | Lemma for srabase 21091 and similar theorems. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.) |
| ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (Scalar‘ndx) ≠ (𝐸‘ndx) & ⊢ ( ·𝑠 ‘ndx) ≠ (𝐸‘ndx) & ⊢ (·𝑖‘ndx) ≠ (𝐸‘ndx) ⇒ ⊢ (𝜑 → (𝐸‘𝑊) = (𝐸‘𝐴)) | ||
| Theorem | srabase 21091 | Base set of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.) |
| ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) ⇒ ⊢ (𝜑 → (Base‘𝑊) = (Base‘𝐴)) | ||
| Theorem | sraaddg 21092 | Additive operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.) |
| ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) ⇒ ⊢ (𝜑 → (+g‘𝑊) = (+g‘𝐴)) | ||
| Theorem | sramulr 21093 | Multiplicative operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.) |
| ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) ⇒ ⊢ (𝜑 → (.r‘𝑊) = (.r‘𝐴)) | ||
| Theorem | srasca 21094 | The set of scalars of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Proof shortened by AV, 12-Nov-2024.) |
| ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) ⇒ ⊢ (𝜑 → (𝑊 ↾s 𝑆) = (Scalar‘𝐴)) | ||
| Theorem | sravsca 21095 | The scalar product operation of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Proof shortened by AV, 12-Nov-2024.) |
| ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) ⇒ ⊢ (𝜑 → (.r‘𝑊) = ( ·𝑠 ‘𝐴)) | ||
| Theorem | sraip 21096 | The inner product operation of a subring algebra. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) ⇒ ⊢ (𝜑 → (.r‘𝑊) = (·𝑖‘𝐴)) | ||
| Theorem | sratset 21097 | Topology component of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.) |
| ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) ⇒ ⊢ (𝜑 → (TopSet‘𝑊) = (TopSet‘𝐴)) | ||
| Theorem | sratopn 21098 | Topology component of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) ⇒ ⊢ (𝜑 → (TopOpen‘𝑊) = (TopOpen‘𝐴)) | ||
| Theorem | srads 21099 | Distance function of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by AV, 29-Oct-2024.) |
| ⊢ (𝜑 → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) & ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝑊)) ⇒ ⊢ (𝜑 → (dist‘𝑊) = (dist‘𝐴)) | ||
| Theorem | sraring 21100 | Condition for a subring algebra to be a ring. (Contributed by Thierry Arnoux, 24-Jul-2023.) |
| ⊢ 𝐴 = ((subringAlg ‘𝑅)‘𝑉) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑉 ⊆ 𝐵) → 𝐴 ∈ Ring) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |