Detailed syntax breakdown of Definition df-zlm
| Step | Hyp | Ref
| Expression |
| 1 | | czlm 21511 |
. 2
class
ℤMod |
| 2 | | vg |
. . 3
setvar 𝑔 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | 2 | cv 1539 |
. . . . 5
class 𝑔 |
| 5 | | cnx 17230 |
. . . . . . 7
class
ndx |
| 6 | | csca 17300 |
. . . . . . 7
class
Scalar |
| 7 | 5, 6 | cfv 6561 |
. . . . . 6
class
(Scalar‘ndx) |
| 8 | | czring 21457 |
. . . . . 6
class
ℤring |
| 9 | 7, 8 | cop 4632 |
. . . . 5
class
〈(Scalar‘ndx), ℤring〉 |
| 10 | | csts 17200 |
. . . . 5
class
sSet |
| 11 | 4, 9, 10 | co 7431 |
. . . 4
class (𝑔 sSet 〈(Scalar‘ndx),
ℤring〉) |
| 12 | | cvsca 17301 |
. . . . . 6
class
·𝑠 |
| 13 | 5, 12 | cfv 6561 |
. . . . 5
class (
·𝑠 ‘ndx) |
| 14 | | cmg 19085 |
. . . . . 6
class
.g |
| 15 | 4, 14 | cfv 6561 |
. . . . 5
class
(.g‘𝑔) |
| 16 | 13, 15 | cop 4632 |
. . . 4
class 〈(
·𝑠 ‘ndx), (.g‘𝑔)〉 |
| 17 | 11, 16, 10 | co 7431 |
. . 3
class ((𝑔 sSet 〈(Scalar‘ndx),
ℤring〉) sSet 〈( ·𝑠
‘ndx), (.g‘𝑔)〉) |
| 18 | 2, 3, 17 | cmpt 5225 |
. 2
class (𝑔 ∈ V ↦ ((𝑔 sSet 〈(Scalar‘ndx),
ℤring〉) sSet 〈( ·𝑠
‘ndx), (.g‘𝑔)〉)) |
| 19 | 1, 18 | wceq 1540 |
1
wff ℤMod
= (𝑔 ∈ V ↦
((𝑔 sSet
〈(Scalar‘ndx), ℤring〉) sSet 〈(
·𝑠 ‘ndx), (.g‘𝑔)〉)) |