| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zrhval | Structured version Visualization version GIF version | ||
| Description: Define the unique homomorphism from the integers to a ring or field. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
| Ref | Expression |
|---|---|
| zrhval.l | ⊢ 𝐿 = (ℤRHom‘𝑅) |
| Ref | Expression |
|---|---|
| zrhval | ⊢ 𝐿 = ∪ (ℤring RingHom 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrhval.l | . 2 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
| 2 | oveq2 7363 | . . . . 5 ⊢ (𝑟 = 𝑅 → (ℤring RingHom 𝑟) = (ℤring RingHom 𝑅)) | |
| 3 | 2 | unieqd 4873 | . . . 4 ⊢ (𝑟 = 𝑅 → ∪ (ℤring RingHom 𝑟) = ∪ (ℤring RingHom 𝑅)) |
| 4 | df-zrh 21449 | . . . 4 ⊢ ℤRHom = (𝑟 ∈ V ↦ ∪ (ℤring RingHom 𝑟)) | |
| 5 | ovex 7388 | . . . . 5 ⊢ (ℤring RingHom 𝑅) ∈ V | |
| 6 | 5 | uniex 7683 | . . . 4 ⊢ ∪ (ℤring RingHom 𝑅) ∈ V |
| 7 | 3, 4, 6 | fvmpt 6938 | . . 3 ⊢ (𝑅 ∈ V → (ℤRHom‘𝑅) = ∪ (ℤring RingHom 𝑅)) |
| 8 | fvprc 6823 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (ℤRHom‘𝑅) = ∅) | |
| 9 | dfrhm2 20401 | . . . . . . . 8 ⊢ RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)))) | |
| 10 | 9 | reldmmpo 7489 | . . . . . . 7 ⊢ Rel dom RingHom |
| 11 | 10 | ovprc2 7395 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (ℤring RingHom 𝑅) = ∅) |
| 12 | 11 | unieqd 4873 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → ∪ (ℤring RingHom 𝑅) = ∪ ∅) |
| 13 | uni0 4888 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
| 14 | 12, 13 | eqtrdi 2784 | . . . 4 ⊢ (¬ 𝑅 ∈ V → ∪ (ℤring RingHom 𝑅) = ∅) |
| 15 | 8, 14 | eqtr4d 2771 | . . 3 ⊢ (¬ 𝑅 ∈ V → (ℤRHom‘𝑅) = ∪ (ℤring RingHom 𝑅)) |
| 16 | 7, 15 | pm2.61i 182 | . 2 ⊢ (ℤRHom‘𝑅) = ∪ (ℤring RingHom 𝑅) |
| 17 | 1, 16 | eqtri 2756 | 1 ⊢ 𝐿 = ∪ (ℤring RingHom 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∩ cin 3897 ∅c0 4282 ∪ cuni 4860 ‘cfv 6489 (class class class)co 7355 MndHom cmhm 18697 GrpHom cghm 19132 mulGrpcmgp 20066 Ringcrg 20159 RingHom crh 20396 ℤringczring 21392 ℤRHomczrh 21445 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-map 8761 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-plusg 17181 df-0g 17352 df-mhm 18699 df-ghm 19133 df-mgp 20067 df-ur 20108 df-ring 20161 df-rhm 20399 df-zrh 21449 |
| This theorem is referenced by: zrhval2 21454 zrhpropd 21460 |
| Copyright terms: Public domain | W3C validator |