![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zrhval | Structured version Visualization version GIF version |
Description: Define the unique homomorphism from the integers to a ring or field. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
Ref | Expression |
---|---|
zrhval.l | ⊢ 𝐿 = (ℤRHom‘𝑅) |
Ref | Expression |
---|---|
zrhval | ⊢ 𝐿 = ∪ (ℤring RingHom 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zrhval.l | . 2 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
2 | oveq2 7439 | . . . . 5 ⊢ (𝑟 = 𝑅 → (ℤring RingHom 𝑟) = (ℤring RingHom 𝑅)) | |
3 | 2 | unieqd 4925 | . . . 4 ⊢ (𝑟 = 𝑅 → ∪ (ℤring RingHom 𝑟) = ∪ (ℤring RingHom 𝑅)) |
4 | df-zrh 21532 | . . . 4 ⊢ ℤRHom = (𝑟 ∈ V ↦ ∪ (ℤring RingHom 𝑟)) | |
5 | ovex 7464 | . . . . 5 ⊢ (ℤring RingHom 𝑅) ∈ V | |
6 | 5 | uniex 7760 | . . . 4 ⊢ ∪ (ℤring RingHom 𝑅) ∈ V |
7 | 3, 4, 6 | fvmpt 7016 | . . 3 ⊢ (𝑅 ∈ V → (ℤRHom‘𝑅) = ∪ (ℤring RingHom 𝑅)) |
8 | fvprc 6899 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (ℤRHom‘𝑅) = ∅) | |
9 | dfrhm2 20491 | . . . . . . . 8 ⊢ RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)))) | |
10 | 9 | reldmmpo 7567 | . . . . . . 7 ⊢ Rel dom RingHom |
11 | 10 | ovprc2 7471 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (ℤring RingHom 𝑅) = ∅) |
12 | 11 | unieqd 4925 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → ∪ (ℤring RingHom 𝑅) = ∪ ∅) |
13 | uni0 4940 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
14 | 12, 13 | eqtrdi 2791 | . . . 4 ⊢ (¬ 𝑅 ∈ V → ∪ (ℤring RingHom 𝑅) = ∅) |
15 | 8, 14 | eqtr4d 2778 | . . 3 ⊢ (¬ 𝑅 ∈ V → (ℤRHom‘𝑅) = ∪ (ℤring RingHom 𝑅)) |
16 | 7, 15 | pm2.61i 182 | . 2 ⊢ (ℤRHom‘𝑅) = ∪ (ℤring RingHom 𝑅) |
17 | 1, 16 | eqtri 2763 | 1 ⊢ 𝐿 = ∪ (ℤring RingHom 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∩ cin 3962 ∅c0 4339 ∪ cuni 4912 ‘cfv 6563 (class class class)co 7431 MndHom cmhm 18807 GrpHom cghm 19243 mulGrpcmgp 20152 Ringcrg 20251 RingHom crh 20486 ℤringczring 21475 ℤRHomczrh 21528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-plusg 17311 df-0g 17488 df-mhm 18809 df-ghm 19244 df-mgp 20153 df-ur 20200 df-ring 20253 df-rhm 20489 df-zrh 21532 |
This theorem is referenced by: zrhval2 21537 zrhpropd 21543 |
Copyright terms: Public domain | W3C validator |