| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zrhval | Structured version Visualization version GIF version | ||
| Description: Define the unique homomorphism from the integers to a ring or field. (Contributed by Mario Carneiro, 13-Jun-2015.) (Revised by AV, 12-Jun-2019.) |
| Ref | Expression |
|---|---|
| zrhval.l | ⊢ 𝐿 = (ℤRHom‘𝑅) |
| Ref | Expression |
|---|---|
| zrhval | ⊢ 𝐿 = ∪ (ℤring RingHom 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrhval.l | . 2 ⊢ 𝐿 = (ℤRHom‘𝑅) | |
| 2 | oveq2 7349 | . . . . 5 ⊢ (𝑟 = 𝑅 → (ℤring RingHom 𝑟) = (ℤring RingHom 𝑅)) | |
| 3 | 2 | unieqd 4867 | . . . 4 ⊢ (𝑟 = 𝑅 → ∪ (ℤring RingHom 𝑟) = ∪ (ℤring RingHom 𝑅)) |
| 4 | df-zrh 21435 | . . . 4 ⊢ ℤRHom = (𝑟 ∈ V ↦ ∪ (ℤring RingHom 𝑟)) | |
| 5 | ovex 7374 | . . . . 5 ⊢ (ℤring RingHom 𝑅) ∈ V | |
| 6 | 5 | uniex 7669 | . . . 4 ⊢ ∪ (ℤring RingHom 𝑅) ∈ V |
| 7 | 3, 4, 6 | fvmpt 6924 | . . 3 ⊢ (𝑅 ∈ V → (ℤRHom‘𝑅) = ∪ (ℤring RingHom 𝑅)) |
| 8 | fvprc 6809 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (ℤRHom‘𝑅) = ∅) | |
| 9 | dfrhm2 20387 | . . . . . . . 8 ⊢ RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)))) | |
| 10 | 9 | reldmmpo 7475 | . . . . . . 7 ⊢ Rel dom RingHom |
| 11 | 10 | ovprc2 7381 | . . . . . 6 ⊢ (¬ 𝑅 ∈ V → (ℤring RingHom 𝑅) = ∅) |
| 12 | 11 | unieqd 4867 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → ∪ (ℤring RingHom 𝑅) = ∪ ∅) |
| 13 | uni0 4882 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
| 14 | 12, 13 | eqtrdi 2782 | . . . 4 ⊢ (¬ 𝑅 ∈ V → ∪ (ℤring RingHom 𝑅) = ∅) |
| 15 | 8, 14 | eqtr4d 2769 | . . 3 ⊢ (¬ 𝑅 ∈ V → (ℤRHom‘𝑅) = ∪ (ℤring RingHom 𝑅)) |
| 16 | 7, 15 | pm2.61i 182 | . 2 ⊢ (ℤRHom‘𝑅) = ∪ (ℤring RingHom 𝑅) |
| 17 | 1, 16 | eqtri 2754 | 1 ⊢ 𝐿 = ∪ (ℤring RingHom 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∩ cin 3896 ∅c0 4278 ∪ cuni 4854 ‘cfv 6476 (class class class)co 7341 MndHom cmhm 18684 GrpHom cghm 19119 mulGrpcmgp 20053 Ringcrg 20146 RingHom crh 20382 ℤringczring 21378 ℤRHomczrh 21431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-plusg 17169 df-0g 17340 df-mhm 18686 df-ghm 19120 df-mgp 20054 df-ur 20095 df-ring 20148 df-rhm 20385 df-zrh 21435 |
| This theorem is referenced by: zrhval2 21440 zrhpropd 21446 |
| Copyright terms: Public domain | W3C validator |