MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-zs12 Structured version   Visualization version   GIF version

Definition df-zs12 28408
Description: Define the set of dyadic rationals. This is the set of rationals whose denominator is a power of two. Later we will prove that this is precisely the set of surreals with a finite birthday. (Contributed by Scott Fenton, 27-May-2025.)
Assertion
Ref Expression
df-zs12 s[1/2] = {𝑥 ∣ ∃𝑦 ∈ ℤs𝑧 ∈ ℕ0s 𝑥 = (𝑦 /su (2ss𝑧))}
Distinct variable group:   𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-zs12
StepHypRef Expression
1 czs12 28407 . 2 class s[1/2]
2 vx . . . . . . 7 setvar 𝑥
32cv 1536 . . . . . 6 class 𝑥
4 vy . . . . . . . 8 setvar 𝑦
54cv 1536 . . . . . . 7 class 𝑦
6 c2s 28403 . . . . . . . 8 class 2s
7 vz . . . . . . . . 9 setvar 𝑧
87cv 1536 . . . . . . . 8 class 𝑧
9 cexps 28405 . . . . . . . 8 class s
106, 8, 9co 7445 . . . . . . 7 class (2ss𝑧)
11 cdivs 28222 . . . . . . 7 class /su
125, 10, 11co 7445 . . . . . 6 class (𝑦 /su (2ss𝑧))
133, 12wceq 1537 . . . . 5 wff 𝑥 = (𝑦 /su (2ss𝑧))
14 cnn0s 28327 . . . . 5 class 0s
1513, 7, 14wrex 3072 . . . 4 wff 𝑧 ∈ ℕ0s 𝑥 = (𝑦 /su (2ss𝑧))
16 czs 28373 . . . 4 class s
1715, 4, 16wrex 3072 . . 3 wff 𝑦 ∈ ℤs𝑧 ∈ ℕ0s 𝑥 = (𝑦 /su (2ss𝑧))
1817, 2cab 2711 . 2 class {𝑥 ∣ ∃𝑦 ∈ ℤs𝑧 ∈ ℕ0s 𝑥 = (𝑦 /su (2ss𝑧))}
191, 18wceq 1537 1 wff s[1/2] = {𝑥 ∣ ∃𝑦 ∈ ℤs𝑧 ∈ ℕ0s 𝑥 = (𝑦 /su (2ss𝑧))}
Colors of variables: wff setvar class
This definition is referenced by:  elzs12  28430  zs12ex  28431
  Copyright terms: Public domain W3C validator