Detailed syntax breakdown of Definition df-zs12
Step | Hyp | Ref
| Expression |
1 | | czs12 28407 |
. 2
class
ℤs[1/2] |
2 | | vx |
. . . . . . 7
setvar 𝑥 |
3 | 2 | cv 1536 |
. . . . . 6
class 𝑥 |
4 | | vy |
. . . . . . . 8
setvar 𝑦 |
5 | 4 | cv 1536 |
. . . . . . 7
class 𝑦 |
6 | | c2s 28403 |
. . . . . . . 8
class
2s |
7 | | vz |
. . . . . . . . 9
setvar 𝑧 |
8 | 7 | cv 1536 |
. . . . . . . 8
class 𝑧 |
9 | | cexps 28405 |
. . . . . . . 8
class
↑s |
10 | 6, 8, 9 | co 7445 |
. . . . . . 7
class
(2s↑s𝑧) |
11 | | cdivs 28222 |
. . . . . . 7
class
/su |
12 | 5, 10, 11 | co 7445 |
. . . . . 6
class (𝑦 /su
(2s↑s𝑧)) |
13 | 3, 12 | wceq 1537 |
. . . . 5
wff 𝑥 = (𝑦 /su
(2s↑s𝑧)) |
14 | | cnn0s 28327 |
. . . . 5
class
ℕ0s |
15 | 13, 7, 14 | wrex 3072 |
. . . 4
wff
∃𝑧 ∈
ℕ0s 𝑥 =
(𝑦 /su
(2s↑s𝑧)) |
16 | | czs 28373 |
. . . 4
class
ℤs |
17 | 15, 4, 16 | wrex 3072 |
. . 3
wff
∃𝑦 ∈
ℤs ∃𝑧 ∈ ℕ0s 𝑥 = (𝑦 /su
(2s↑s𝑧)) |
18 | 17, 2 | cab 2711 |
. 2
class {𝑥 ∣ ∃𝑦 ∈ ℤs
∃𝑧 ∈
ℕ0s 𝑥 =
(𝑦 /su
(2s↑s𝑧))} |
19 | 1, 18 | wceq 1537 |
1
wff
ℤs[1/2] = {𝑥 ∣ ∃𝑦 ∈ ℤs ∃𝑧 ∈ ℕ0s
𝑥 = (𝑦 /su
(2s↑s𝑧))} |