![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elzs12 | Structured version Visualization version GIF version |
Description: Membership in the dyadic fractions. (Contributed by Scott Fenton, 7-Aug-2025.) |
Ref | Expression |
---|---|
elzs12 | ⊢ (𝐴 ∈ ℤs[1/2] ↔ ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2s↑s𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3509 | . 2 ⊢ (𝐴 ∈ ℤs[1/2] → 𝐴 ∈ V) | |
2 | id 22 | . . . . 5 ⊢ (𝐴 = (𝑥 /su (2s↑s𝑦)) → 𝐴 = (𝑥 /su (2s↑s𝑦))) | |
3 | ovex 7481 | . . . . 5 ⊢ (𝑥 /su (2s↑s𝑦)) ∈ V | |
4 | 2, 3 | eqeltrdi 2852 | . . . 4 ⊢ (𝐴 = (𝑥 /su (2s↑s𝑦)) → 𝐴 ∈ V) |
5 | 4 | a1i 11 | . . 3 ⊢ ((𝑥 ∈ ℤs ∧ 𝑦 ∈ ℕ0s) → (𝐴 = (𝑥 /su (2s↑s𝑦)) → 𝐴 ∈ V)) |
6 | 5 | rexlimivv 3207 | . 2 ⊢ (∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2s↑s𝑦)) → 𝐴 ∈ V) |
7 | eqeq1 2744 | . . . 4 ⊢ (𝑧 = 𝐴 → (𝑧 = (𝑥 /su (2s↑s𝑦)) ↔ 𝐴 = (𝑥 /su (2s↑s𝑦)))) | |
8 | 7 | 2rexbidv 3228 | . . 3 ⊢ (𝑧 = 𝐴 → (∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝑧 = (𝑥 /su (2s↑s𝑦)) ↔ ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2s↑s𝑦)))) |
9 | df-zs12 28417 | . . 3 ⊢ ℤs[1/2] = {𝑧 ∣ ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝑧 = (𝑥 /su (2s↑s𝑦))} | |
10 | 8, 9 | elab2g 3696 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ ℤs[1/2] ↔ ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2s↑s𝑦)))) |
11 | 1, 6, 10 | pm5.21nii 378 | 1 ⊢ (𝐴 ∈ ℤs[1/2] ↔ ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2s↑s𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 Vcvv 3488 (class class class)co 7448 /su cdivs 28231 ℕ0scnn0s 28336 ℤsczs 28382 2sc2s 28412 ↑scexps 28414 ℤs[1/2]czs12 28416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-rex 3077 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-sn 4649 df-pr 4651 df-uni 4932 df-iota 6525 df-fv 6581 df-ov 7451 df-zs12 28417 |
This theorem is referenced by: zzs12 28441 zs12bday 28442 |
Copyright terms: Public domain | W3C validator |