| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elzs12 | Structured version Visualization version GIF version | ||
| Description: Membership in the dyadic fractions. (Contributed by Scott Fenton, 7-Aug-2025.) |
| Ref | Expression |
|---|---|
| elzs12 | ⊢ (𝐴 ∈ ℤs[1/2] ↔ ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2s↑s𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3468 | . 2 ⊢ (𝐴 ∈ ℤs[1/2] → 𝐴 ∈ V) | |
| 2 | id 22 | . . . . 5 ⊢ (𝐴 = (𝑥 /su (2s↑s𝑦)) → 𝐴 = (𝑥 /su (2s↑s𝑦))) | |
| 3 | ovex 7420 | . . . . 5 ⊢ (𝑥 /su (2s↑s𝑦)) ∈ V | |
| 4 | 2, 3 | eqeltrdi 2836 | . . . 4 ⊢ (𝐴 = (𝑥 /su (2s↑s𝑦)) → 𝐴 ∈ V) |
| 5 | 4 | a1i 11 | . . 3 ⊢ ((𝑥 ∈ ℤs ∧ 𝑦 ∈ ℕ0s) → (𝐴 = (𝑥 /su (2s↑s𝑦)) → 𝐴 ∈ V)) |
| 6 | 5 | rexlimivv 3179 | . 2 ⊢ (∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2s↑s𝑦)) → 𝐴 ∈ V) |
| 7 | eqeq1 2733 | . . . 4 ⊢ (𝑧 = 𝐴 → (𝑧 = (𝑥 /su (2s↑s𝑦)) ↔ 𝐴 = (𝑥 /su (2s↑s𝑦)))) | |
| 8 | 7 | 2rexbidv 3202 | . . 3 ⊢ (𝑧 = 𝐴 → (∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝑧 = (𝑥 /su (2s↑s𝑦)) ↔ ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2s↑s𝑦)))) |
| 9 | df-zs12 28301 | . . 3 ⊢ ℤs[1/2] = {𝑧 ∣ ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝑧 = (𝑥 /su (2s↑s𝑦))} | |
| 10 | 8, 9 | elab2g 3647 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ ℤs[1/2] ↔ ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2s↑s𝑦)))) |
| 11 | 1, 6, 10 | pm5.21nii 378 | 1 ⊢ (𝐴 ∈ ℤs[1/2] ↔ ∃𝑥 ∈ ℤs ∃𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2s↑s𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Vcvv 3447 (class class class)co 7387 /su cdivs 28090 ℕ0scnn0s 28206 ℤsczs 28266 2sc2s 28296 ↑scexps 28298 ℤs[1/2]czs12 28300 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rex 3054 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-sn 4590 df-pr 4592 df-uni 4872 df-iota 6464 df-fv 6519 df-ov 7390 df-zs12 28301 |
| This theorem is referenced by: zzs12 28339 zs12negscl 28340 zs12ge0 28342 zs12bday 28343 |
| Copyright terms: Public domain | W3C validator |