MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elzs12 Structured version   Visualization version   GIF version

Theorem elzs12 28368
Description: Membership in the dyadic fractions. (Contributed by Scott Fenton, 7-Aug-2025.)
Assertion
Ref Expression
elzs12 (𝐴 ∈ ℤs[1/2] ↔ ∃𝑥 ∈ ℤs𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2ss𝑦)))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem elzs12
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elex 3459 . 2 (𝐴 ∈ ℤs[1/2] → 𝐴 ∈ V)
2 id 22 . . . . 5 (𝐴 = (𝑥 /su (2ss𝑦)) → 𝐴 = (𝑥 /su (2ss𝑦)))
3 ovex 7386 . . . . 5 (𝑥 /su (2ss𝑦)) ∈ V
42, 3eqeltrdi 2836 . . . 4 (𝐴 = (𝑥 /su (2ss𝑦)) → 𝐴 ∈ V)
54a1i 11 . . 3 ((𝑥 ∈ ℤs𝑦 ∈ ℕ0s) → (𝐴 = (𝑥 /su (2ss𝑦)) → 𝐴 ∈ V))
65rexlimivv 3171 . 2 (∃𝑥 ∈ ℤs𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2ss𝑦)) → 𝐴 ∈ V)
7 eqeq1 2733 . . . 4 (𝑧 = 𝐴 → (𝑧 = (𝑥 /su (2ss𝑦)) ↔ 𝐴 = (𝑥 /su (2ss𝑦))))
872rexbidv 3194 . . 3 (𝑧 = 𝐴 → (∃𝑥 ∈ ℤs𝑦 ∈ ℕ0s 𝑧 = (𝑥 /su (2ss𝑦)) ↔ ∃𝑥 ∈ ℤs𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2ss𝑦))))
9 df-zs12 28325 . . 3 s[1/2] = {𝑧 ∣ ∃𝑥 ∈ ℤs𝑦 ∈ ℕ0s 𝑧 = (𝑥 /su (2ss𝑦))}
108, 9elab2g 3638 . 2 (𝐴 ∈ V → (𝐴 ∈ ℤs[1/2] ↔ ∃𝑥 ∈ ℤs𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2ss𝑦))))
111, 6, 10pm5.21nii 378 1 (𝐴 ∈ ℤs[1/2] ↔ ∃𝑥 ∈ ℤs𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2ss𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3438  (class class class)co 7353   /su cdivs 28113  0scnn0s 28229  sczs 28289  2sc2s 28320  scexps 28322  s[1/2]czs12 28324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-rex 3054  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-sn 4580  df-pr 4582  df-uni 4862  df-iota 6442  df-fv 6494  df-ov 7356  df-zs12 28325
This theorem is referenced by:  zzs12  28370  zs12no  28371  zs12addscl  28372  zs12negscl  28373  zs12half  28375  zs12zodd  28377  zs12ge0  28378  zs12bday  28379
  Copyright terms: Public domain W3C validator