MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elzs12 Structured version   Visualization version   GIF version

Theorem elzs12 28394
Description: Membership in the dyadic fractions. (Contributed by Scott Fenton, 7-Aug-2025.)
Assertion
Ref Expression
elzs12 (𝐴 ∈ ℤs[1/2] ↔ ∃𝑥 ∈ ℤs𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2ss𝑦)))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem elzs12
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elex 3485 . 2 (𝐴 ∈ ℤs[1/2] → 𝐴 ∈ V)
2 id 22 . . . . 5 (𝐴 = (𝑥 /su (2ss𝑦)) → 𝐴 = (𝑥 /su (2ss𝑦)))
3 ovex 7443 . . . . 5 (𝑥 /su (2ss𝑦)) ∈ V
42, 3eqeltrdi 2843 . . . 4 (𝐴 = (𝑥 /su (2ss𝑦)) → 𝐴 ∈ V)
54a1i 11 . . 3 ((𝑥 ∈ ℤs𝑦 ∈ ℕ0s) → (𝐴 = (𝑥 /su (2ss𝑦)) → 𝐴 ∈ V))
65rexlimivv 3187 . 2 (∃𝑥 ∈ ℤs𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2ss𝑦)) → 𝐴 ∈ V)
7 eqeq1 2740 . . . 4 (𝑧 = 𝐴 → (𝑧 = (𝑥 /su (2ss𝑦)) ↔ 𝐴 = (𝑥 /su (2ss𝑦))))
872rexbidv 3210 . . 3 (𝑧 = 𝐴 → (∃𝑥 ∈ ℤs𝑦 ∈ ℕ0s 𝑧 = (𝑥 /su (2ss𝑦)) ↔ ∃𝑥 ∈ ℤs𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2ss𝑦))))
9 df-zs12 28358 . . 3 s[1/2] = {𝑧 ∣ ∃𝑥 ∈ ℤs𝑦 ∈ ℕ0s 𝑧 = (𝑥 /su (2ss𝑦))}
108, 9elab2g 3664 . 2 (𝐴 ∈ V → (𝐴 ∈ ℤs[1/2] ↔ ∃𝑥 ∈ ℤs𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2ss𝑦))))
111, 6, 10pm5.21nii 378 1 (𝐴 ∈ ℤs[1/2] ↔ ∃𝑥 ∈ ℤs𝑦 ∈ ℕ0s 𝐴 = (𝑥 /su (2ss𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3061  Vcvv 3464  (class class class)co 7410   /su cdivs 28147  0scnn0s 28263  sczs 28323  2sc2s 28353  scexps 28355  s[1/2]czs12 28357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-nul 5281
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-rex 3062  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-sn 4607  df-pr 4609  df-uni 4889  df-iota 6489  df-fv 6544  df-ov 7413  df-zs12 28358
This theorem is referenced by:  zzs12  28396  zs12negscl  28397  zs12ge0  28399  zs12bday  28400
  Copyright terms: Public domain W3C validator