Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ee010 Structured version   Visualization version   GIF version

Theorem ee010 41329
Description: e010 41328 without virtual deductions. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
ee010.1 𝜑
ee010.2 (𝜓𝜒)
ee010.3 𝜃
ee010.4 (𝜑 → (𝜒 → (𝜃𝜏)))
Assertion
Ref Expression
ee010 (𝜓𝜏)

Proof of Theorem ee010
StepHypRef Expression
1 ee010.1 . . 3 𝜑
21a1i 11 . 2 (𝜓𝜑)
3 ee010.2 . 2 (𝜓𝜒)
4 ee010.3 . . 3 𝜃
54a1i 11 . 2 (𝜓𝜃)
6 ee010.4 . 2 (𝜑 → (𝜒 → (𝜃𝜏)))
72, 3, 5, 6syl3c 66 1 (𝜓𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator