Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  e001 Structured version   Visualization version   GIF version

Theorem e001 42306
Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
e001.1 𝜑
e001.2 𝜓
e001.3 (   𝜒   ▶   𝜃   )
e001.4 (𝜑 → (𝜓 → (𝜃𝜏)))
Assertion
Ref Expression
e001 (   𝜒   ▶   𝜏   )

Proof of Theorem e001
StepHypRef Expression
1 e001.1 . . 3 𝜑
21vd01 42217 . 2 (   𝜒   ▶   𝜑   )
3 e001.2 . . 3 𝜓
43vd01 42217 . 2 (   𝜒   ▶   𝜓   )
5 e001.3 . 2 (   𝜒   ▶   𝜃   )
6 e001.4 . 2 (𝜑 → (𝜓 → (𝜃𝜏)))
72, 4, 5, 6e111 42294 1 (   𝜒   ▶   𝜏   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  (   wvd1 42189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-vd1 42190
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator