MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expi Structured version   Visualization version   GIF version

Theorem expi 165
Description: An exportation inference. (Contributed by NM, 29-Dec-1992.) (Proof shortened by Mel L. O'Cat, 28-Nov-2008.)
Hypothesis
Ref Expression
expi.1 (¬ (𝜑 → ¬ 𝜓) → 𝜒)
Assertion
Ref Expression
expi (𝜑 → (𝜓𝜒))

Proof of Theorem expi
StepHypRef Expression
1 pm3.2im 160 . 2 (𝜑 → (𝜓 → ¬ (𝜑 → ¬ 𝜓)))
2 expi.1 . 2 (¬ (𝜑 → ¬ 𝜓) → 𝜒)
31, 2syl6 35 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  impbi  207  imbi12  347  ex  413
  Copyright terms: Public domain W3C validator