MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  impbi Structured version   Visualization version   GIF version

Theorem impbi 211
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.)
Assertion
Ref Expression
impbi ((𝜑𝜓) → ((𝜓𝜑) → (𝜑𝜓)))

Proof of Theorem impbi
StepHypRef Expression
1 df-bi 210 . . 3 ¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓)))
2 simprim 169 . . 3 (¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓))) → (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓)))
31, 2ax-mp 5 . 2 (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓))
43expi 168 1 ((𝜑𝜓) → ((𝜓𝜑) → (𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210
This theorem is referenced by:  impbii  212  impbidd  213  impbid21d  214  dfbi1  216  impimprbi  829  bj-bisym  34509  bj-moeub  34770  eqsbc3rVD  42133  orbi1rVD  42141  3impexpVD  42149  3impexpbicomVD  42150  imbi12VD  42166  sbcim2gVD  42168  sb5ALTVD  42206
  Copyright terms: Public domain W3C validator