Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > impbi | Structured version Visualization version GIF version |
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) |
Ref | Expression |
---|---|
impbi | ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜑) → (𝜑 ↔ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bi 206 | . . 3 ⊢ ¬ (((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) → ¬ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) | |
2 | simprim 166 | . . 3 ⊢ (¬ (((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) → ¬ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) → (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓)) |
4 | 3 | expi 165 | 1 ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜑) → (𝜑 ↔ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: impbii 208 impbidd 209 impbid21d 210 dfbi1 212 impimprbi 825 bj-bisym 34751 bj-moeub 35012 eqsbc2VD 42413 orbi1rVD 42421 3impexpVD 42429 3impexpbicomVD 42430 imbi12VD 42446 sbcim2gVD 42448 sb5ALTVD 42486 |
Copyright terms: Public domain | W3C validator |