|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > impbi | Structured version Visualization version GIF version | ||
| Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) | 
| Ref | Expression | 
|---|---|
| impbi | ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜑) → (𝜑 ↔ 𝜓))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-bi 207 | . . 3 ⊢ ¬ (((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) → ¬ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) | |
| 2 | simprim 166 | . . 3 ⊢ (¬ (((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) → ¬ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) → (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓)) | 
| 4 | 3 | expi 165 | 1 ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜑) → (𝜑 ↔ 𝜓))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 | 
| This theorem is referenced by: impbii 209 impbidd 210 impbid21d 211 dfbi1 213 impimprbi 829 bj-bisym 36591 bj-moeub 36850 eqsbc2VD 44860 orbi1rVD 44868 3impexpVD 44876 3impexpbicomVD 44877 imbi12VD 44893 sbcim2gVD 44895 sb5ALTVD 44933 | 
| Copyright terms: Public domain | W3C validator |