MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imbi12 Structured version   Visualization version   GIF version

Theorem imbi12 347
Description: Closed form of imbi12i 351. Was automatically derived from its "Virtual Deduction" version and the Metamath program "MM-PA> MINIMIZE_WITH *" command. (Contributed by Alan Sare, 18-Mar-2012.)
Assertion
Ref Expression
imbi12 ((𝜑𝜓) → ((𝜒𝜃) → ((𝜑𝜒) ↔ (𝜓𝜃))))

Proof of Theorem imbi12
StepHypRef Expression
1 simplim 167 . . 3 (¬ ((𝜑𝜓) → ¬ (𝜒𝜃)) → (𝜑𝜓))
2 simprim 166 . . 3 (¬ ((𝜑𝜓) → ¬ (𝜒𝜃)) → (𝜒𝜃))
31, 2imbi12d 345 . 2 (¬ ((𝜑𝜓) → ¬ (𝜒𝜃)) → ((𝜑𝜒) ↔ (𝜓𝜃)))
43expi 165 1 ((𝜑𝜓) → ((𝜒𝜃) → ((𝜑𝜒) ↔ (𝜓𝜃))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  imbi12i  351  raleqbidvv  3338  bj-imbi12  34764  ifpbi12  41095  ifpbi13  41096  imbi13  42140  imbi13VD  42494  sbcssgVD  42503
  Copyright terms: Public domain W3C validator