| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege67b | Structured version Visualization version GIF version | ||
| Description: Lemma for frege68b 43871. Proposition 67 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege67b | ⊢ (((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → ∀𝑥𝜑)) → ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → [𝑦 / 𝑥]𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-frege58b 43859 | . 2 ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) | |
| 2 | frege7 43766 | . 2 ⊢ ((∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) → (((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → ∀𝑥𝜑)) → ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → [𝑦 / 𝑥]𝜑)))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → ∀𝑥𝜑)) → ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → [𝑦 / 𝑥]𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 [wsb 2063 |
| This theorem was proved from axioms: ax-mp 5 ax-frege1 43748 ax-frege2 43749 ax-frege58b 43859 |
| This theorem is referenced by: frege68b 43871 |
| Copyright terms: Public domain | W3C validator |