| Metamath
Proof Explorer Theorem List (p. 434 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | succlg 43301 | Closure law for ordinal successor. (Contributed by RP, 8-Jan-2025.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐵 = ∅ ∨ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o)))) → suc 𝐴 ∈ 𝐵) | ||
| Theorem | dflim5 43302* | A limit ordinal is either the proper class of ordinals or some nonzero product with omega. (Contributed by RP, 8-Jan-2025.) |
| ⊢ (Lim 𝐴 ↔ (𝐴 = On ∨ ∃𝑥 ∈ (On ∖ 1o)𝐴 = (ω ·o 𝑥))) | ||
| Theorem | oacl2g 43303 | Closure law for ordinal addition. Here we show that ordinal addition is closed within the empty set or any ordinal power of omega. (Contributed by RP, 5-Jan-2025.) |
| ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ (𝐶 = ∅ ∨ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On))) → (𝐴 +o 𝐵) ∈ 𝐶) | ||
| Theorem | onmcl 43304 | If an ordinal is less than a power of omega, the product with a natural number is also less than that power of omega. (Contributed by RP, 19-Feb-2025.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) → (𝐴 ∈ (ω ↑o 𝐵) → (𝐴 ·o 𝑁) ∈ (ω ↑o 𝐵))) | ||
| Theorem | omabs2 43305 | Ordinal multiplication by a larger ordinal is absorbed when the larger ordinal is either 2 or ω raised to some power of ω. (Contributed by RP, 12-Jan-2025.) |
| ⊢ (((𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴) ∧ (𝐵 = ∅ ∨ 𝐵 = 2o ∨ (𝐵 = (ω ↑o (ω ↑o 𝐶)) ∧ 𝐶 ∈ On))) → (𝐴 ·o 𝐵) = 𝐵) | ||
| Theorem | omcl2 43306 | Closure law for ordinal multiplication. (Contributed by RP, 12-Jan-2025.) |
| ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ (𝐶 = ∅ ∨ (𝐶 = (ω ↑o (ω ↑o 𝐷)) ∧ 𝐷 ∈ On))) → (𝐴 ·o 𝐵) ∈ 𝐶) | ||
| Theorem | omcl3g 43307 | Closure law for ordinal multiplication. (Contributed by RP, 14-Jan-2025.) |
| ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ (𝐶 ∈ 3o ∨ (𝐶 = (ω ↑o (ω ↑o 𝐷)) ∧ 𝐷 ∈ On))) → (𝐴 ·o 𝐵) ∈ 𝐶) | ||
| Theorem | ordsssucb 43308 | An ordinal number is less than or equal to the successor of an ordinal class iff the ordinal number is either less than or equal to the ordinal class or the ordinal number is equal to the successor of the ordinal class. See also ordsssucim 43375, limsssuc 7790. (Contributed by RP, 22-Feb-2025.) |
| ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ⊆ suc 𝐵 ↔ (𝐴 ⊆ 𝐵 ∨ 𝐴 = suc 𝐵))) | ||
| Theorem | tfsconcatlem 43309* | Lemma for tfsconcatun 43310. (Contributed by RP, 23-Feb-2025.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃!𝑥∃𝑦 ∈ 𝐵 (𝐶 = (𝐴 +o 𝑦) ∧ 𝑥 = (𝐹‘𝑦))) | ||
| Theorem | tfsconcatun 43310* | The concatenation of two transfinite series is a union of functions. (Contributed by RP, 23-Feb-2025.) |
| ⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 + 𝐵) = (𝐴 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))})) | ||
| Theorem | tfsconcatfn 43311* | The concatenation of two transfinite series is a transfinite series. (Contributed by RP, 22-Feb-2025.) |
| ⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 + 𝐵) Fn (𝐶 +o 𝐷)) | ||
| Theorem | tfsconcatfv1 43312* | An early value of the concatenation of two transfinite series. (Contributed by RP, 23-Feb-2025.) |
| ⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ 𝐶) → ((𝐴 + 𝐵)‘𝑋) = (𝐴‘𝑋)) | ||
| Theorem | tfsconcatfv2 43313* | A latter value of the concatenation of two transfinite series. (Contributed by RP, 23-Feb-2025.) |
| ⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ 𝐷) → ((𝐴 + 𝐵)‘(𝐶 +o 𝑋)) = (𝐵‘𝑋)) | ||
| Theorem | tfsconcatfv 43314* | The value of the concatenation of two transfinite series. (Contributed by RP, 24-Feb-2025.) |
| ⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → ((𝐴 + 𝐵)‘𝑋) = if(𝑋 ∈ 𝐶, (𝐴‘𝑋), (𝐵‘(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋)))) | ||
| Theorem | tfsconcatrn 43315* | The range of the concatenation of two transfinite series. (Contributed by RP, 24-Feb-2025.) |
| ⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran (𝐴 + 𝐵) = (ran 𝐴 ∪ ran 𝐵)) | ||
| Theorem | tfsconcatfo 43316* | The concatenation of two transfinite series is onto the union of the ranges. (Contributed by RP, 24-Feb-2025.) |
| ⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 + 𝐵):(𝐶 +o 𝐷)–onto→(ran 𝐴 ∪ ran 𝐵)) | ||
| Theorem | tfsconcatb0 43317* | The concatentation with the empty series leaves the series unchanged. (Contributed by RP, 25-Feb-2025.) |
| ⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐵 = ∅ ↔ (𝐴 + 𝐵) = 𝐴)) | ||
| Theorem | tfsconcat0i 43318* | The concatentation with the empty series leaves the series unchanged. (Contributed by RP, 28-Feb-2025.) |
| ⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 = ∅ → (𝐴 + 𝐵) = 𝐵)) | ||
| Theorem | tfsconcat0b 43319* | The concatentation with the empty series leaves the finite series unchanged. (Contributed by RP, 1-Mar-2025.) |
| ⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ ω)) → (𝐴 = ∅ ↔ (𝐴 + 𝐵) = 𝐵)) | ||
| Theorem | tfsconcat00 43320* | The concatentation of two empty series results in an empty series. (Contributed by RP, 25-Feb-2025.) |
| ⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (𝐴 + 𝐵) = ∅)) | ||
| Theorem | tfsconcatrev 43321* | If the domain of a transfinite sequence is an ordinal sum, the sequence can be decomposed into two sequences with domains corresponding to the addends. Theorem 2 in Grzegorz Bancerek, "Epsilon Numbers and Cantor Normal Form", Formalized Mathematics, Vol. 17, No. 4, Pages 249–256, 2009. DOI: 10.2478/v10037-009-0032-8 (Contributed by RP, 2-Mar-2025.) |
| ⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ∃𝑢 ∈ (ran 𝐹 ↑m 𝐶)∃𝑣 ∈ (ran 𝐹 ↑m 𝐷)((𝑢 + 𝑣) = 𝐹 ∧ dom 𝑢 = 𝐶 ∧ dom 𝑣 = 𝐷)) | ||
| Theorem | tfsconcatrnss12 43322* | The range of the concatenation of transfinite sequences is a superset of the ranges of both sequences. Theorem 3 in Grzegorz Bancerek, "Epsilon Numbers and Cantor Normal Form", Formalized Mathematics, Vol. 17, No. 4, Pages 249–256, 2009. DOI: 10.2478/v10037-009-0032-8 (Contributed by RP, 2-Mar-2025.) |
| ⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (ran 𝐴 ⊆ ran (𝐴 + 𝐵) ∧ ran 𝐵 ⊆ ran (𝐴 + 𝐵))) | ||
| Theorem | tfsconcatrnss 43323* | The concatenation of transfinite sequences yields elements from a class iff both sequences yield elements from that class. (Contributed by RP, 2-Mar-2025.) |
| ⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (ran (𝐴 + 𝐵) ⊆ 𝑋 ↔ (ran 𝐴 ⊆ 𝑋 ∧ ran 𝐵 ⊆ 𝑋))) | ||
| Theorem | tfsconcatrnsson 43324* | The concatenation of transfinite sequences yields ordinals iff both sequences yield ordinals. Theorem 4 in Grzegorz Bancerek, "Epsilon Numbers and Cantor Normal Form", Formalized Mathematics, Vol. 17, No. 4, Pages 249–256, 2009. DOI: 10.2478/v10037-009-0032-8 (Contributed by RP, 2-Mar-2025.) |
| ⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (ran (𝐴 + 𝐵) ⊆ On ↔ (ran 𝐴 ⊆ On ∧ ran 𝐵 ⊆ On))) | ||
| Theorem | tfsnfin 43325 | A transfinite sequence is infinite iff its domain is greater than or equal to omega. Theorem 5 in Grzegorz Bancerek, "Epsilon Numbers and Cantor Normal Form", Formalized Mathematics, Vol. 17, No. 4, Pages 249–256, 2009. DOI: 10.2478/v10037-009-0032-8 (Contributed by RP, 1-Mar-2025.) |
| ⊢ ((𝐴 Fn 𝐵 ∧ 𝐵 ∈ On) → (¬ 𝐴 ∈ Fin ↔ ω ⊆ 𝐵)) | ||
| Theorem | rp-tfslim 43326* | The limit of a sequence of ordinals is the union of its range. (Contributed by RP, 1-Mar-2025.) |
| ⊢ (𝐴 Fn 𝐵 → ∪ 𝑥 ∈ 𝐵 (𝐴‘𝑥) = ∪ ran 𝐴) | ||
| Theorem | ofoafg 43327* | Addition operator for functions from sets into ordinals results in a function from the intersection of sets into an ordinal. (Contributed by RP, 5-Jan-2025.) |
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) → ( ∘f +o ↾ ((𝐷 ↑m 𝐴) × (𝐸 ↑m 𝐵))):((𝐷 ↑m 𝐴) × (𝐸 ↑m 𝐵))⟶(𝐹 ↑m 𝐶)) | ||
| Theorem | ofoaf 43328 | Addition operator for functions from sets into power of omega results in a function from the intersection of sets to that power of omega. (Contributed by RP, 5-Jan-2025.) |
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷))) → ( ∘f +o ↾ ((𝐸 ↑m 𝐴) × (𝐸 ↑m 𝐵))):((𝐸 ↑m 𝐴) × (𝐸 ↑m 𝐵))⟶(𝐸 ↑m 𝐶)) | ||
| Theorem | ofoafo 43329 | Addition operator for functions from a set into a power of omega is an onto binary operator. (Contributed by RP, 5-Jan-2025.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → ( ∘f +o ↾ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐴))):((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐴))–onto→(𝐶 ↑m 𝐴)) | ||
| Theorem | ofoacl 43330 | Closure law for component wise addition of ordinal-yielding functions. (Contributed by RP, 5-Jan-2025.) |
| ⊢ (((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ (𝐹 ∈ (𝐶 ↑m 𝐴) ∧ 𝐺 ∈ (𝐶 ↑m 𝐴))) → (𝐹 ∘f +o 𝐺) ∈ (𝐶 ↑m 𝐴)) | ||
| Theorem | ofoaid1 43331 | Identity law for component wise addition of ordinal-yielding functions. (Contributed by RP, 5-Jan-2025.) |
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ 𝐹 ∈ (𝐵 ↑m 𝐴)) → (𝐹 ∘f +o (𝐴 × {∅})) = 𝐹) | ||
| Theorem | ofoaid2 43332 | Identity law for component wise addition of ordinal-yielding functions. (Contributed by RP, 5-Jan-2025.) |
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ 𝐹 ∈ (𝐵 ↑m 𝐴)) → ((𝐴 × {∅}) ∘f +o 𝐹) = 𝐹) | ||
| Theorem | ofoaass 43333 | Component-wise addition of ordinal-yielding functions is associative. (Contributed by RP, 5-Jan-2025.) |
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴))) → ((𝐹 ∘f +o 𝐺) ∘f +o 𝐻) = (𝐹 ∘f +o (𝐺 ∘f +o 𝐻))) | ||
| Theorem | ofoacom 43334 | Component-wise addition of natural numnber-yielding functions commutes. (Contributed by RP, 5-Jan-2025.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → (𝐹 ∘f +o 𝐺) = (𝐺 ∘f +o 𝐹)) | ||
| Theorem | naddcnff 43335 | Addition operator for Cantor normal forms is a function into Cantor normal forms. (Contributed by RP, 2-Jan-2025.) |
| ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ( ∘f +o ↾ (𝑆 × 𝑆)):(𝑆 × 𝑆)⟶𝑆) | ||
| Theorem | naddcnffn 43336 | Addition operator for Cantor normal forms is a function. (Contributed by RP, 2-Jan-2025.) |
| ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ( ∘f +o ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆)) | ||
| Theorem | naddcnffo 43337 | Addition of Cantor normal forms is a function onto Cantor normal forms. (Contributed by RP, 2-Jan-2025.) |
| ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ( ∘f +o ↾ (𝑆 × 𝑆)):(𝑆 × 𝑆)–onto→𝑆) | ||
| Theorem | naddcnfcl 43338 | Closure law for component-wise ordinal addition of Cantor normal forms. (Contributed by RP, 2-Jan-2025.) |
| ⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) → (𝐹 ∘f +o 𝐺) ∈ 𝑆) | ||
| Theorem | naddcnfcom 43339 | Component-wise ordinal addition of Cantor normal forms commutes. (Contributed by RP, 2-Jan-2025.) |
| ⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) → (𝐹 ∘f +o 𝐺) = (𝐺 ∘f +o 𝐹)) | ||
| Theorem | naddcnfid1 43340 | Identity law for component-wise ordinal addition of Cantor normal forms. (Contributed by RP, 3-Jan-2025.) |
| ⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹 ∈ 𝑆) → (𝐹 ∘f +o (𝑋 × {∅})) = 𝐹) | ||
| Theorem | naddcnfid2 43341 | Identity law for component-wise ordinal addition of Cantor normal forms. (Contributed by RP, 3-Jan-2025.) |
| ⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹 ∈ 𝑆) → ((𝑋 × {∅}) ∘f +o 𝐹) = 𝐹) | ||
| Theorem | naddcnfass 43342 | Component-wise addition of Cantor normal forms is associative. (Contributed by RP, 3-Jan-2025.) |
| ⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) → ((𝐹 ∘f +o 𝐺) ∘f +o 𝐻) = (𝐹 ∘f +o (𝐺 ∘f +o 𝐻))) | ||
| Theorem | onsucunifi 43343* | The successor to the union of any non-empty, finite subset of ordinals is the union of the successors of the elements. (Contributed by RP, 12-Feb-2025.) |
| ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → suc ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 suc 𝑥) | ||
| Theorem | sucunisn 43344 | The successor to the union of any singleton of a set is the successor of the set. (Contributed by RP, 11-Feb-2025.) |
| ⊢ (𝐴 ∈ 𝑉 → suc ∪ {𝐴} = suc 𝐴) | ||
| Theorem | onsucunipr 43345 | The successor to the union of any pair of ordinals is the union of the successors of the elements. (Contributed by RP, 12-Feb-2025.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → suc ∪ {𝐴, 𝐵} = ∪ {suc 𝐴, suc 𝐵}) | ||
| Theorem | onsucunitp 43346 | The successor to the union of any triple of ordinals is the union of the successors of the elements. (Contributed by RP, 12-Feb-2025.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → suc ∪ {𝐴, 𝐵, 𝐶} = ∪ {suc 𝐴, suc 𝐵, suc 𝐶}) | ||
| Theorem | oaun3lem1 43347* | The class of all ordinal sums of elements from two ordinals is ordinal. Lemma for oaun3 43355. (Contributed by RP, 13-Feb-2025.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord {𝑥 ∣ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑥 = (𝑎 +o 𝑏)}) | ||
| Theorem | oaun3lem2 43348* | The class of all ordinal sums of elements from two ordinals is bounded by the sum. Lemma for oaun3 43355. (Contributed by RP, 13-Feb-2025.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝑥 ∣ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑥 = (𝑎 +o 𝑏)} ⊆ (𝐴 +o 𝐵)) | ||
| Theorem | oaun3lem3 43349* | The class of all ordinal sums of elements from two ordinals is an ordinal. Lemma for oaun3 43355. (Contributed by RP, 13-Feb-2025.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝑥 ∣ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑥 = (𝑎 +o 𝑏)} ∈ On) | ||
| Theorem | oaun3lem4 43350* | The class of all ordinal sums of elements from two ordinals is less than the successor to the sum. Lemma for oaun3 43355. (Contributed by RP, 12-Feb-2025.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝑥 ∣ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑥 = (𝑎 +o 𝑏)} ∈ suc (𝐴 +o 𝐵)) | ||
| Theorem | rp-abid 43351* | Two ways to express a class. (Contributed by RP, 13-Feb-2025.) |
| ⊢ 𝐴 = {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = 𝑎} | ||
| Theorem | oadif1lem 43352* | Express the set difference of a continuous sum and its left addend as a class of sums. (Contributed by RP, 13-Feb-2025.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊕ 𝐵) ∈ On) & ⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ On) → (𝐴 ⊕ 𝑏) ∈ On) & ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝑦 ∧ 𝑦 ∈ (𝐴 ⊕ 𝐵))) → ∃𝑏 ∈ 𝐵 (𝐴 ⊕ 𝑏) = 𝑦) & ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑏 ∈ 𝐵 → (𝐴 ⊕ 𝑏) ∈ (𝐴 ⊕ 𝐵))) & ⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ On) → 𝐴 ⊆ (𝐴 ⊕ 𝑏)) ⇒ ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ⊕ 𝐵) ∖ 𝐴) = {𝑥 ∣ ∃𝑏 ∈ 𝐵 𝑥 = (𝐴 ⊕ 𝑏)}) | ||
| Theorem | oadif1 43353* | Express the set difference of an ordinal sum and its left addend as a class of sums. (Contributed by RP, 13-Feb-2025.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∖ 𝐴) = {𝑥 ∣ ∃𝑏 ∈ 𝐵 𝑥 = (𝐴 +o 𝑏)}) | ||
| Theorem | oaun2 43354* | Ordinal addition as a union of classes. (Contributed by RP, 13-Feb-2025.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = ∪ {{𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = 𝑎}, {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = (𝐴 +o 𝑏)}}) | ||
| Theorem | oaun3 43355* | Ordinal addition as a union of classes. (Contributed by RP, 13-Feb-2025.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = ∪ {{𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = 𝑎}, {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = (𝐴 +o 𝑏)}, {𝑧 ∣ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 +o 𝑏)}}) | ||
| Theorem | naddov4 43356* | Alternate expression for natural addition. (Contributed by RP, 19-Dec-2024.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = ∩ ({𝑥 ∈ On ∣ ∀𝑎 ∈ 𝐴 (𝑎 +no 𝐵) ∈ 𝑥} ∩ {𝑥 ∈ On ∣ ∀𝑏 ∈ 𝐵 (𝐴 +no 𝑏) ∈ 𝑥})) | ||
| Theorem | nadd2rabtr 43357* | The set of ordinals which have a natural sum less than some ordinal is transitive. (Contributed by RP, 20-Dec-2024.) |
| ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → Tr {𝑥 ∈ 𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶}) | ||
| Theorem | nadd2rabord 43358* | The set of ordinals which have a natural sum less than some ordinal is an ordinal. (Contributed by RP, 20-Dec-2024.) |
| ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → Ord {𝑥 ∈ 𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶}) | ||
| Theorem | nadd2rabex 43359* | The class of ordinals which have a natural sum less than some ordinal is a set. (Contributed by RP, 20-Dec-2024.) |
| ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥 ∈ 𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ∈ V) | ||
| Theorem | nadd2rabon 43360* | The set of ordinals which have a natural sum less than some ordinal is an ordinal number. (Contributed by RP, 20-Dec-2024.) |
| ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥 ∈ 𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ∈ On) | ||
| Theorem | nadd1rabtr 43361* | The set of ordinals which have a natural sum less than some ordinal is transitive. (Contributed by RP, 20-Dec-2024.) |
| ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → Tr {𝑥 ∈ 𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶}) | ||
| Theorem | nadd1rabord 43362* | The set of ordinals which have a natural sum less than some ordinal is an ordinal. (Contributed by RP, 20-Dec-2024.) |
| ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → Ord {𝑥 ∈ 𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶}) | ||
| Theorem | nadd1rabex 43363* | The class of ordinals which have a natural sum less than some ordinal is a set. (Contributed by RP, 20-Dec-2024.) |
| ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥 ∈ 𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶} ∈ V) | ||
| Theorem | nadd1rabon 43364* | The set of ordinals which have a natural sum less than some ordinal is an ordinal number. (Contributed by RP, 20-Dec-2024.) |
| ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥 ∈ 𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶} ∈ On) | ||
| Theorem | nadd1suc 43365 | Natural addition with 1 is same as successor. (Contributed by RP, 31-Dec-2024.) |
| ⊢ (𝐴 ∈ On → (𝐴 +no 1o) = suc 𝐴) | ||
| Theorem | naddass1 43366 | Natural addition of ordinal numbers is associative when the third element is 1. (Contributed by RP, 1-Jan-2025.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +no 𝐵) +no 1o) = (𝐴 +no (𝐵 +no 1o))) | ||
| Theorem | naddgeoa 43367 | Natural addition results in a value greater than or equal than that of ordinal addition. (Contributed by RP, 1-Jan-2025.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ⊆ (𝐴 +no 𝐵)) | ||
| Theorem | naddonnn 43368 | Natural addition with a natural number on the right results in a value equal to that of ordinal addition. (Contributed by RP, 1-Jan-2025.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) = (𝐴 +no 𝐵)) | ||
| Theorem | naddwordnexlem0 43369 | When 𝐴 is the sum of a limit ordinal (or zero) and a natural number and 𝐵 is the sum of a larger limit ordinal and a smaller natural number, (ω ·o suc 𝐶) lies between 𝐴 and 𝐵. (Contributed by RP, 14-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 = ((ω ·o 𝐶) +o 𝑀)) & ⊢ (𝜑 → 𝐵 = ((ω ·o 𝐷) +o 𝑁)) & ⊢ (𝜑 → 𝐶 ∈ 𝐷) & ⊢ (𝜑 → 𝐷 ∈ On) & ⊢ (𝜑 → 𝑀 ∈ ω) & ⊢ (𝜑 → 𝑁 ∈ 𝑀) ⇒ ⊢ (𝜑 → (𝐴 ∈ (ω ·o suc 𝐶) ∧ (ω ·o suc 𝐶) ⊆ 𝐵)) | ||
| Theorem | naddwordnexlem1 43370 | When 𝐴 is the sum of a limit ordinal (or zero) and a natural number and 𝐵 is the sum of a larger limit ordinal and a smaller natural number, 𝐵 is equal to or larger than 𝐴. (Contributed by RP, 14-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 = ((ω ·o 𝐶) +o 𝑀)) & ⊢ (𝜑 → 𝐵 = ((ω ·o 𝐷) +o 𝑁)) & ⊢ (𝜑 → 𝐶 ∈ 𝐷) & ⊢ (𝜑 → 𝐷 ∈ On) & ⊢ (𝜑 → 𝑀 ∈ ω) & ⊢ (𝜑 → 𝑁 ∈ 𝑀) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
| Theorem | naddwordnexlem2 43371 | When 𝐴 is the sum of a limit ordinal (or zero) and a natural number and 𝐵 is the sum of a larger limit ordinal and a smaller natural number, 𝐵 is larger than 𝐴. (Contributed by RP, 14-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 = ((ω ·o 𝐶) +o 𝑀)) & ⊢ (𝜑 → 𝐵 = ((ω ·o 𝐷) +o 𝑁)) & ⊢ (𝜑 → 𝐶 ∈ 𝐷) & ⊢ (𝜑 → 𝐷 ∈ On) & ⊢ (𝜑 → 𝑀 ∈ ω) & ⊢ (𝜑 → 𝑁 ∈ 𝑀) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐵) | ||
| Theorem | naddwordnexlem3 43372* | When 𝐴 is the sum of a limit ordinal (or zero) and a natural number and 𝐵 is the sum of a larger limit ordinal and a smaller natural number, every natural sum of 𝐴 with a natural number is less that 𝐵. (Contributed by RP, 14-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 = ((ω ·o 𝐶) +o 𝑀)) & ⊢ (𝜑 → 𝐵 = ((ω ·o 𝐷) +o 𝑁)) & ⊢ (𝜑 → 𝐶 ∈ 𝐷) & ⊢ (𝜑 → 𝐷 ∈ On) & ⊢ (𝜑 → 𝑀 ∈ ω) & ⊢ (𝜑 → 𝑁 ∈ 𝑀) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ ω (𝐴 +no 𝑥) ∈ 𝐵) | ||
| Theorem | oawordex3 43373* | When 𝐴 is the sum of a limit ordinal (or zero) and a natural number and 𝐵 is the sum of a larger limit ordinal and a smaller natural number, some ordinal sum of 𝐴 is equal to 𝐵. This is a specialization of oawordex 8482. (Contributed by RP, 14-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 = ((ω ·o 𝐶) +o 𝑀)) & ⊢ (𝜑 → 𝐵 = ((ω ·o 𝐷) +o 𝑁)) & ⊢ (𝜑 → 𝐶 ∈ 𝐷) & ⊢ (𝜑 → 𝐷 ∈ On) & ⊢ (𝜑 → 𝑀 ∈ ω) & ⊢ (𝜑 → 𝑁 ∈ 𝑀) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵) | ||
| Theorem | naddwordnexlem4 43374* | When 𝐴 is the sum of a limit ordinal (or zero) and a natural number and 𝐵 is the sum of a larger limit ordinal and a smaller natural number, there exists a product with omega such that the ordinal sum with 𝐴 is less than or equal to 𝐵 while the natural sum is larger than 𝐵. (Contributed by RP, 15-Feb-2025.) |
| ⊢ (𝜑 → 𝐴 = ((ω ·o 𝐶) +o 𝑀)) & ⊢ (𝜑 → 𝐵 = ((ω ·o 𝐷) +o 𝑁)) & ⊢ (𝜑 → 𝐶 ∈ 𝐷) & ⊢ (𝜑 → 𝐷 ∈ On) & ⊢ (𝜑 → 𝑀 ∈ ω) & ⊢ (𝜑 → 𝑁 ∈ 𝑀) & ⊢ 𝑆 = {𝑦 ∈ On ∣ 𝐷 ⊆ (𝐶 +o 𝑦)} ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (On ∖ 1o)((𝐶 +o 𝑥) = 𝐷 ∧ (𝐴 +o (ω ·o 𝑥)) ⊆ 𝐵 ∧ 𝐵 ∈ (𝐴 +no (ω ·o 𝑥)))) | ||
| Theorem | ordsssucim 43375 | If an ordinal is less than or equal to the successor of another, then the first is either less than or equal to the second or the first is equal to the successor of the second. Theorem 1 in Grzegorz Bancerek, "Epsilon Numbers and Cantor Normal Form", Formalized Mathematics, Vol. 17, No. 4, Pages 249–256, 2009. DOI: 10.2478/v10037-009-0032-8 See also ordsssucb 43308 for a biimplication when 𝐴 is a set. (Contributed by RP, 3-Jan-2025.) |
| ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ suc 𝐵 → (𝐴 ⊆ 𝐵 ∨ 𝐴 = suc 𝐵))) | ||
| Theorem | insucid 43376 | The intersection of a class and its successor is itself. (Contributed by RP, 3-Jan-2025.) |
| ⊢ (𝐴 ∩ suc 𝐴) = 𝐴 | ||
| Theorem | om2 43377 | Two ways to double an ordinal. (Contributed by RP, 3-Jan-2025.) |
| ⊢ (𝐴 ∈ On → (𝐴 +o 𝐴) = (𝐴 ·o 2o)) | ||
| Theorem | oaltom 43378 | Multiplication eventually dominates addition. (Contributed by RP, 3-Jan-2025.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵) → (𝐵 +o 𝐴) ∈ (𝐵 ·o 𝐴))) | ||
| Theorem | oe2 43379 | Two ways to square an ordinal. (Contributed by RP, 3-Jan-2025.) |
| ⊢ (𝐴 ∈ On → (𝐴 ·o 𝐴) = (𝐴 ↑o 2o)) | ||
| Theorem | omltoe 43380 | Exponentiation eventually dominates multiplication. (Contributed by RP, 3-Jan-2025.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵) → (𝐵 ·o 𝐴) ∈ (𝐵 ↑o 𝐴))) | ||
| Theorem | abeqabi 43381 | Generalized condition for a class abstraction to be equal to some class. (Contributed by RP, 2-Sep-2024.) |
| ⊢ 𝐴 = {𝑥 ∣ 𝜓} ⇒ ⊢ ({𝑥 ∣ 𝜑} = 𝐴 ↔ ∀𝑥(𝜑 ↔ 𝜓)) | ||
| Theorem | abpr 43382* | Condition for a class abstraction to be a pair. (Contributed by RP, 25-Aug-2024.) |
| ⊢ ({𝑥 ∣ 𝜑} = {𝑌, 𝑍} ↔ ∀𝑥(𝜑 ↔ (𝑥 = 𝑌 ∨ 𝑥 = 𝑍))) | ||
| Theorem | abtp 43383* | Condition for a class abstraction to be a triple. (Contributed by RP, 25-Aug-2024.) |
| ⊢ ({𝑥 ∣ 𝜑} = {𝑋, 𝑌, 𝑍} ↔ ∀𝑥(𝜑 ↔ (𝑥 = 𝑋 ∨ 𝑥 = 𝑌 ∨ 𝑥 = 𝑍))) | ||
| Theorem | ralopabb 43384* | Restricted universal quantification over an ordered-pair class abstraction. (Contributed by RP, 25-Sep-2024.) |
| ⊢ 𝑂 = {〈𝑥, 𝑦〉 ∣ 𝜑} & ⊢ (𝑜 = 〈𝑥, 𝑦〉 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (∀𝑜 ∈ 𝑂 𝜓 ↔ ∀𝑥∀𝑦(𝜑 → 𝜒)) | ||
| Theorem | fpwfvss 43385 | Functions into a powerset always have values which are subsets. This is dependant on our convention when the argument is not part of the domain. (Contributed by RP, 13-Sep-2024.) |
| ⊢ 𝐹:𝐶⟶𝒫 𝐵 ⇒ ⊢ (𝐹‘𝐴) ⊆ 𝐵 | ||
| Theorem | sdomne0 43386 | A class that strictly dominates any set is not empty. (Suggested by SN, 14-Jan-2025.) (Contributed by RP, 14-Jan-2025.) |
| ⊢ (𝐵 ≺ 𝐴 → 𝐴 ≠ ∅) | ||
| Theorem | sdomne0d 43387 | A class that strictly dominates any set is not empty. (Contributed by RP, 3-Sep-2024.) |
| ⊢ (𝜑 → 𝐵 ≺ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐴 ≠ ∅) | ||
| Theorem | safesnsupfiss 43388 | If 𝐵 is a finite subset of ordered class 𝐴, we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 1-Sep-2024.) |
| ⊢ (𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o)) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝑅 Or 𝐴) ⇒ ⊢ (𝜑 → if(𝑂 ≺ 𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) ⊆ 𝐵) | ||
| Theorem | safesnsupfiub 43389* | If 𝐵 is a finite subset of ordered class 𝐴, we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 1-Sep-2024.) |
| ⊢ (𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o)) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 𝑥𝑅𝑦) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ if (𝑂 ≺ 𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)∀𝑦 ∈ 𝐶 𝑥𝑅𝑦) | ||
| Theorem | safesnsupfidom1o 43390 | If 𝐵 is a finite subset of ordered class 𝐴, we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 1-Sep-2024.) |
| ⊢ (𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o)) & ⊢ (𝜑 → 𝐵 ∈ Fin) ⇒ ⊢ (𝜑 → if(𝑂 ≺ 𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) ≼ 1o) | ||
| Theorem | safesnsupfilb 43391* | If 𝐵 is a finite subset of ordered class 𝐴, we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 3-Sep-2024.) |
| ⊢ (𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o)) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝑅 Or 𝐴) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ (𝐵 ∖ if(𝑂 ≺ 𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵))∀𝑦 ∈ if (𝑂 ≺ 𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)𝑥𝑅𝑦) | ||
| Theorem | isoeq145d 43392 | Equality deduction for isometries. (Contributed by RP, 14-Jan-2025.) |
| ⊢ (𝜑 → 𝐹 = 𝐺) & ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ (𝜑 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐷))) | ||
| Theorem | resisoeq45d 43393 | Equality deduction for equally restricted isometries. (Contributed by RP, 14-Jan-2025.) |
| ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ (𝜑 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → ((𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐹 ↾ 𝐶) Isom 𝑅, 𝑆 (𝐶, 𝐷))) | ||
| Theorem | negslem1 43394 | An equivalence between identically restricted order-reversing self-isometries. (Contributed by RP, 30-Sep-2024.) |
| ⊢ (𝐴 = 𝐵 → ((𝐹 ↾ 𝐴) Isom 𝑅, ◡𝑅(𝐴, 𝐴) ↔ (𝐹 ↾ 𝐵) Isom 𝑅, ◡𝑅(𝐵, 𝐵))) | ||
| Theorem | nvocnvb 43395* | Equivalence to saying the converse of an involution is the function itself. (Contributed by RP, 13-Oct-2024.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ ◡𝐹 = 𝐹) ↔ (𝐹:𝐴–1-1-onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥)) | ||
| Theorem | rp-brsslt 43396* | Binary relation form of a relation, <, which has been extended from relation 𝑅 to subsets of class 𝑆. Usually, we will assume 𝑅 Or 𝑆. Definition in [Alling], p. 2. Generalization of brsslt 27714. (Originally by Scott Fenton, 8-Dec-2021.) (Contributed by RP, 28-Nov-2023.) |
| ⊢ < = {〈𝑎, 𝑏〉 ∣ (𝑎 ⊆ 𝑆 ∧ 𝑏 ⊆ 𝑆 ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 𝑥𝑅𝑦)} ⇒ ⊢ (𝐴 < 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥𝑅𝑦))) | ||
| Theorem | nla0002 43397* | Extending a linear order to subsets, the empty set is less than any subset. Note in [Alling], p. 3. (Contributed by RP, 28-Nov-2023.) |
| ⊢ < = {〈𝑎, 𝑏〉 ∣ (𝑎 ⊆ 𝑆 ∧ 𝑏 ⊆ 𝑆 ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 𝑥𝑅𝑦)} & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) ⇒ ⊢ (𝜑 → ∅ < 𝐴) | ||
| Theorem | nla0003 43398* | Extending a linear order to subsets, the empty set is greater than any subset. Note in [Alling], p. 3. (Contributed by RP, 28-Nov-2023.) |
| ⊢ < = {〈𝑎, 𝑏〉 ∣ (𝑎 ⊆ 𝑆 ∧ 𝑏 ⊆ 𝑆 ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 𝑥𝑅𝑦)} & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) ⇒ ⊢ (𝜑 → 𝐴 < ∅) | ||
| Theorem | nla0001 43399* | Extending a linear order to subsets, the empty set is less than itself. Note in [Alling], p. 3. (Contributed by RP, 28-Nov-2023.) |
| ⊢ < = {〈𝑎, 𝑏〉 ∣ (𝑎 ⊆ 𝑆 ∧ 𝑏 ⊆ 𝑆 ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 𝑥𝑅𝑦)} ⇒ ⊢ (𝜑 → ∅ < ∅) | ||
| Theorem | faosnf0.11b 43400* |
𝐵
is called a non-limit ordinal if it is not a limit ordinal.
(Contributed by RP, 27-Sep-2023.)
Alling, Norman L. "Fundamentals of Analysis Over Surreal Numbers Fields." The Rocky Mountain Journal of Mathematics 19, no. 3 (1989): 565-73. http://www.jstor.org/stable/44237243. |
| ⊢ ((Ord 𝐴 ∧ ¬ Lim 𝐴 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |