![]() |
Metamath
Proof Explorer Theorem List (p. 434 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | tfsconcatfv1 43301* | An early value of the concatenation of two transfinite series. (Contributed by RP, 23-Feb-2025.) |
⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ 𝐶) → ((𝐴 + 𝐵)‘𝑋) = (𝐴‘𝑋)) | ||
Theorem | tfsconcatfv2 43302* | A latter value of the concatenation of two transfinite series. (Contributed by RP, 23-Feb-2025.) |
⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ 𝐷) → ((𝐴 + 𝐵)‘(𝐶 +o 𝑋)) = (𝐵‘𝑋)) | ||
Theorem | tfsconcatfv 43303* | The value of the concatenation of two transfinite series. (Contributed by RP, 24-Feb-2025.) |
⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → ((𝐴 + 𝐵)‘𝑋) = if(𝑋 ∈ 𝐶, (𝐴‘𝑋), (𝐵‘(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋)))) | ||
Theorem | tfsconcatrn 43304* | The range of the concatenation of two transfinite series. (Contributed by RP, 24-Feb-2025.) |
⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran (𝐴 + 𝐵) = (ran 𝐴 ∪ ran 𝐵)) | ||
Theorem | tfsconcatfo 43305* | The concatenation of two transfinite series is onto the union of the ranges. (Contributed by RP, 24-Feb-2025.) |
⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 + 𝐵):(𝐶 +o 𝐷)–onto→(ran 𝐴 ∪ ran 𝐵)) | ||
Theorem | tfsconcatb0 43306* | The concatentation with the empty series leaves the series unchanged. (Contributed by RP, 25-Feb-2025.) |
⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐵 = ∅ ↔ (𝐴 + 𝐵) = 𝐴)) | ||
Theorem | tfsconcat0i 43307* | The concatentation with the empty series leaves the series unchanged. (Contributed by RP, 28-Feb-2025.) |
⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 = ∅ → (𝐴 + 𝐵) = 𝐵)) | ||
Theorem | tfsconcat0b 43308* | The concatentation with the empty series leaves the finite series unchanged. (Contributed by RP, 1-Mar-2025.) |
⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ ω)) → (𝐴 = ∅ ↔ (𝐴 + 𝐵) = 𝐵)) | ||
Theorem | tfsconcat00 43309* | The concatentation of two empty series results in an empty series. (Contributed by RP, 25-Feb-2025.) |
⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (𝐴 + 𝐵) = ∅)) | ||
Theorem | tfsconcatrev 43310* | If the domain of a transfinite sequence is an ordinal sum, the sequence can be decomposed into two sequences with domains corresponding to the addends. Theorem 2 in Grzegorz Bancerek, "Epsilon Numbers and Cantor Normal Form", Formalized Mathematics, Vol. 17, No. 4, Pages 249–256, 2009. DOI: 10.2478/v10037-009-0032-8 (Contributed by RP, 2-Mar-2025.) |
⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ∃𝑢 ∈ (ran 𝐹 ↑m 𝐶)∃𝑣 ∈ (ran 𝐹 ↑m 𝐷)((𝑢 + 𝑣) = 𝐹 ∧ dom 𝑢 = 𝐶 ∧ dom 𝑣 = 𝐷)) | ||
Theorem | tfsconcatrnss12 43311* | The range of the concatenation of transfinite sequences is a superset of the ranges of both sequences. Theorem 3 in Grzegorz Bancerek, "Epsilon Numbers and Cantor Normal Form", Formalized Mathematics, Vol. 17, No. 4, Pages 249–256, 2009. DOI: 10.2478/v10037-009-0032-8 (Contributed by RP, 2-Mar-2025.) |
⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (ran 𝐴 ⊆ ran (𝐴 + 𝐵) ∧ ran 𝐵 ⊆ ran (𝐴 + 𝐵))) | ||
Theorem | tfsconcatrnss 43312* | The concatenation of transfinite sequences yields elements from a class iff both sequences yield elements from that class. (Contributed by RP, 2-Mar-2025.) |
⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (ran (𝐴 + 𝐵) ⊆ 𝑋 ↔ (ran 𝐴 ⊆ 𝑋 ∧ ran 𝐵 ⊆ 𝑋))) | ||
Theorem | tfsconcatrnsson 43313* | The concatenation of transfinite sequences yields ordinals iff both sequences yield ordinals. Theorem 4 in Grzegorz Bancerek, "Epsilon Numbers and Cantor Normal Form", Formalized Mathematics, Vol. 17, No. 4, Pages 249–256, 2009. DOI: 10.2478/v10037-009-0032-8 (Contributed by RP, 2-Mar-2025.) |
⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (ran (𝐴 + 𝐵) ⊆ On ↔ (ran 𝐴 ⊆ On ∧ ran 𝐵 ⊆ On))) | ||
Theorem | tfsnfin 43314 | A transfinite sequence is infinite iff its domain is greater than or equal to omega. Theorem 5 in Grzegorz Bancerek, "Epsilon Numbers and Cantor Normal Form", Formalized Mathematics, Vol. 17, No. 4, Pages 249–256, 2009. DOI: 10.2478/v10037-009-0032-8 (Contributed by RP, 1-Mar-2025.) |
⊢ ((𝐴 Fn 𝐵 ∧ 𝐵 ∈ On) → (¬ 𝐴 ∈ Fin ↔ ω ⊆ 𝐵)) | ||
Theorem | rp-tfslim 43315* | The limit of a sequence of ordinals is the union of its range. (Contributed by RP, 1-Mar-2025.) |
⊢ (𝐴 Fn 𝐵 → ∪ 𝑥 ∈ 𝐵 (𝐴‘𝑥) = ∪ ran 𝐴) | ||
Theorem | ofoafg 43316* | Addition operator for functions from sets into ordinals results in a function from the intersection of sets into an ordinal. (Contributed by RP, 5-Jan-2025.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) → ( ∘f +o ↾ ((𝐷 ↑m 𝐴) × (𝐸 ↑m 𝐵))):((𝐷 ↑m 𝐴) × (𝐸 ↑m 𝐵))⟶(𝐹 ↑m 𝐶)) | ||
Theorem | ofoaf 43317 | Addition operator for functions from sets into power of omega results in a function from the intersection of sets to that power of omega. (Contributed by RP, 5-Jan-2025.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷))) → ( ∘f +o ↾ ((𝐸 ↑m 𝐴) × (𝐸 ↑m 𝐵))):((𝐸 ↑m 𝐴) × (𝐸 ↑m 𝐵))⟶(𝐸 ↑m 𝐶)) | ||
Theorem | ofoafo 43318 | Addition operator for functions from a set into a power of omega is an onto binary operator. (Contributed by RP, 5-Jan-2025.) |
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → ( ∘f +o ↾ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐴))):((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐴))–onto→(𝐶 ↑m 𝐴)) | ||
Theorem | ofoacl 43319 | Closure law for component wise addition of ordinal-yielding functions. (Contributed by RP, 5-Jan-2025.) |
⊢ (((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ (𝐹 ∈ (𝐶 ↑m 𝐴) ∧ 𝐺 ∈ (𝐶 ↑m 𝐴))) → (𝐹 ∘f +o 𝐺) ∈ (𝐶 ↑m 𝐴)) | ||
Theorem | ofoaid1 43320 | Identity law for component wise addition of ordinal-yielding functions. (Contributed by RP, 5-Jan-2025.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ 𝐹 ∈ (𝐵 ↑m 𝐴)) → (𝐹 ∘f +o (𝐴 × {∅})) = 𝐹) | ||
Theorem | ofoaid2 43321 | Identity law for component wise addition of ordinal-yielding functions. (Contributed by RP, 5-Jan-2025.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ 𝐹 ∈ (𝐵 ↑m 𝐴)) → ((𝐴 × {∅}) ∘f +o 𝐹) = 𝐹) | ||
Theorem | ofoaass 43322 | Component-wise addition of ordinal-yielding functions is associative. (Contributed by RP, 5-Jan-2025.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴))) → ((𝐹 ∘f +o 𝐺) ∘f +o 𝐻) = (𝐹 ∘f +o (𝐺 ∘f +o 𝐻))) | ||
Theorem | ofoacom 43323 | Component-wise addition of natural numnber-yielding functions commutes. (Contributed by RP, 5-Jan-2025.) |
⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → (𝐹 ∘f +o 𝐺) = (𝐺 ∘f +o 𝐹)) | ||
Theorem | naddcnff 43324 | Addition operator for Cantor normal forms is a function into Cantor normal forms. (Contributed by RP, 2-Jan-2025.) |
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ( ∘f +o ↾ (𝑆 × 𝑆)):(𝑆 × 𝑆)⟶𝑆) | ||
Theorem | naddcnffn 43325 | Addition operator for Cantor normal forms is a function. (Contributed by RP, 2-Jan-2025.) |
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ( ∘f +o ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆)) | ||
Theorem | naddcnffo 43326 | Addition of Cantor normal forms is a function onto Cantor normal forms. (Contributed by RP, 2-Jan-2025.) |
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ( ∘f +o ↾ (𝑆 × 𝑆)):(𝑆 × 𝑆)–onto→𝑆) | ||
Theorem | naddcnfcl 43327 | Closure law for component-wise ordinal addition of Cantor normal forms. (Contributed by RP, 2-Jan-2025.) |
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) → (𝐹 ∘f +o 𝐺) ∈ 𝑆) | ||
Theorem | naddcnfcom 43328 | Component-wise ordinal addition of Cantor normal forms commutes. (Contributed by RP, 2-Jan-2025.) |
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) → (𝐹 ∘f +o 𝐺) = (𝐺 ∘f +o 𝐹)) | ||
Theorem | naddcnfid1 43329 | Identity law for component-wise ordinal addition of Cantor normal forms. (Contributed by RP, 3-Jan-2025.) |
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹 ∈ 𝑆) → (𝐹 ∘f +o (𝑋 × {∅})) = 𝐹) | ||
Theorem | naddcnfid2 43330 | Identity law for component-wise ordinal addition of Cantor normal forms. (Contributed by RP, 3-Jan-2025.) |
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹 ∈ 𝑆) → ((𝑋 × {∅}) ∘f +o 𝐹) = 𝐹) | ||
Theorem | naddcnfass 43331 | Component-wise addition of Cantor normal forms is associative. (Contributed by RP, 3-Jan-2025.) |
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) → ((𝐹 ∘f +o 𝐺) ∘f +o 𝐻) = (𝐹 ∘f +o (𝐺 ∘f +o 𝐻))) | ||
Theorem | onsucunifi 43332* | The successor to the union of any non-empty, finite subset of ordinals is the union of the successors of the elements. (Contributed by RP, 12-Feb-2025.) |
⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → suc ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 suc 𝑥) | ||
Theorem | sucunisn 43333 | The successor to the union of any singleton of a set is the successor of the set. (Contributed by RP, 11-Feb-2025.) |
⊢ (𝐴 ∈ 𝑉 → suc ∪ {𝐴} = suc 𝐴) | ||
Theorem | onsucunipr 43334 | The successor to the union of any pair of ordinals is the union of the successors of the elements. (Contributed by RP, 12-Feb-2025.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → suc ∪ {𝐴, 𝐵} = ∪ {suc 𝐴, suc 𝐵}) | ||
Theorem | onsucunitp 43335 | The successor to the union of any triple of ordinals is the union of the successors of the elements. (Contributed by RP, 12-Feb-2025.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → suc ∪ {𝐴, 𝐵, 𝐶} = ∪ {suc 𝐴, suc 𝐵, suc 𝐶}) | ||
Theorem | oaun3lem1 43336* | The class of all ordinal sums of elements from two ordinals is ordinal. Lemma for oaun3 43344. (Contributed by RP, 13-Feb-2025.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord {𝑥 ∣ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑥 = (𝑎 +o 𝑏)}) | ||
Theorem | oaun3lem2 43337* | The class of all ordinal sums of elements from two ordinals is bounded by the sum. Lemma for oaun3 43344. (Contributed by RP, 13-Feb-2025.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝑥 ∣ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑥 = (𝑎 +o 𝑏)} ⊆ (𝐴 +o 𝐵)) | ||
Theorem | oaun3lem3 43338* | The class of all ordinal sums of elements from two ordinals is an ordinal. Lemma for oaun3 43344. (Contributed by RP, 13-Feb-2025.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝑥 ∣ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑥 = (𝑎 +o 𝑏)} ∈ On) | ||
Theorem | oaun3lem4 43339* | The class of all ordinal sums of elements from two ordinals is less than the successor to the sum. Lemma for oaun3 43344. (Contributed by RP, 12-Feb-2025.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝑥 ∣ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑥 = (𝑎 +o 𝑏)} ∈ suc (𝐴 +o 𝐵)) | ||
Theorem | rp-abid 43340* | Two ways to express a class. (Contributed by RP, 13-Feb-2025.) |
⊢ 𝐴 = {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = 𝑎} | ||
Theorem | oadif1lem 43341* | Express the set difference of a continuous sum and its left addend as a class of sums. (Contributed by RP, 13-Feb-2025.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊕ 𝐵) ∈ On) & ⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ On) → (𝐴 ⊕ 𝑏) ∈ On) & ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝑦 ∧ 𝑦 ∈ (𝐴 ⊕ 𝐵))) → ∃𝑏 ∈ 𝐵 (𝐴 ⊕ 𝑏) = 𝑦) & ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑏 ∈ 𝐵 → (𝐴 ⊕ 𝑏) ∈ (𝐴 ⊕ 𝐵))) & ⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ On) → 𝐴 ⊆ (𝐴 ⊕ 𝑏)) ⇒ ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ⊕ 𝐵) ∖ 𝐴) = {𝑥 ∣ ∃𝑏 ∈ 𝐵 𝑥 = (𝐴 ⊕ 𝑏)}) | ||
Theorem | oadif1 43342* | Express the set difference of an ordinal sum and its left addend as a class of sums. (Contributed by RP, 13-Feb-2025.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∖ 𝐴) = {𝑥 ∣ ∃𝑏 ∈ 𝐵 𝑥 = (𝐴 +o 𝑏)}) | ||
Theorem | oaun2 43343* | Ordinal addition as a union of classes. (Contributed by RP, 13-Feb-2025.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = ∪ {{𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = 𝑎}, {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = (𝐴 +o 𝑏)}}) | ||
Theorem | oaun3 43344* | Ordinal addition as a union of classes. (Contributed by RP, 13-Feb-2025.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = ∪ {{𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = 𝑎}, {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = (𝐴 +o 𝑏)}, {𝑧 ∣ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 +o 𝑏)}}) | ||
Theorem | naddov4 43345* | Alternate expression for natural addition. (Contributed by RP, 19-Dec-2024.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = ∩ ({𝑥 ∈ On ∣ ∀𝑎 ∈ 𝐴 (𝑎 +no 𝐵) ∈ 𝑥} ∩ {𝑥 ∈ On ∣ ∀𝑏 ∈ 𝐵 (𝐴 +no 𝑏) ∈ 𝑥})) | ||
Theorem | nadd2rabtr 43346* | The set of ordinals which have a natural sum less than some ordinal is transitive. (Contributed by RP, 20-Dec-2024.) |
⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → Tr {𝑥 ∈ 𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶}) | ||
Theorem | nadd2rabord 43347* | The set of ordinals which have a natural sum less than some ordinal is an ordinal. (Contributed by RP, 20-Dec-2024.) |
⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → Ord {𝑥 ∈ 𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶}) | ||
Theorem | nadd2rabex 43348* | The class of ordinals which have a natural sum less than some ordinal is a set. (Contributed by RP, 20-Dec-2024.) |
⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥 ∈ 𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ∈ V) | ||
Theorem | nadd2rabon 43349* | The set of ordinals which have a natural sum less than some ordinal is an ordinal number. (Contributed by RP, 20-Dec-2024.) |
⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥 ∈ 𝐴 ∣ (𝐵 +no 𝑥) ∈ 𝐶} ∈ On) | ||
Theorem | nadd1rabtr 43350* | The set of ordinals which have a natural sum less than some ordinal is transitive. (Contributed by RP, 20-Dec-2024.) |
⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → Tr {𝑥 ∈ 𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶}) | ||
Theorem | nadd1rabord 43351* | The set of ordinals which have a natural sum less than some ordinal is an ordinal. (Contributed by RP, 20-Dec-2024.) |
⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → Ord {𝑥 ∈ 𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶}) | ||
Theorem | nadd1rabex 43352* | The class of ordinals which have a natural sum less than some ordinal is a set. (Contributed by RP, 20-Dec-2024.) |
⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥 ∈ 𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶} ∈ V) | ||
Theorem | nadd1rabon 43353* | The set of ordinals which have a natural sum less than some ordinal is an ordinal number. (Contributed by RP, 20-Dec-2024.) |
⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → {𝑥 ∈ 𝐴 ∣ (𝑥 +no 𝐵) ∈ 𝐶} ∈ On) | ||
Theorem | nadd1suc 43354 | Natural addition with 1 is same as successor. (Contributed by RP, 31-Dec-2024.) |
⊢ (𝐴 ∈ On → (𝐴 +no 1o) = suc 𝐴) | ||
Theorem | naddass1 43355 | Natural addition of ordinal numbers is associative when the third element is 1. (Contributed by RP, 1-Jan-2025.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +no 𝐵) +no 1o) = (𝐴 +no (𝐵 +no 1o))) | ||
Theorem | naddgeoa 43356 | Natural addition results in a value greater than or equal than that of ordinal addition. (Contributed by RP, 1-Jan-2025.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ⊆ (𝐴 +no 𝐵)) | ||
Theorem | naddonnn 43357 | Natural addition with a natural number on the right results in a value equal to that of ordinal addition. (Contributed by RP, 1-Jan-2025.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) = (𝐴 +no 𝐵)) | ||
Theorem | naddwordnexlem0 43358 | When 𝐴 is the sum of a limit ordinal (or zero) and a natural number and 𝐵 is the sum of a larger limit ordinal and a smaller natural number, (ω ·o suc 𝐶) lies between 𝐴 and 𝐵. (Contributed by RP, 14-Feb-2025.) |
⊢ (𝜑 → 𝐴 = ((ω ·o 𝐶) +o 𝑀)) & ⊢ (𝜑 → 𝐵 = ((ω ·o 𝐷) +o 𝑁)) & ⊢ (𝜑 → 𝐶 ∈ 𝐷) & ⊢ (𝜑 → 𝐷 ∈ On) & ⊢ (𝜑 → 𝑀 ∈ ω) & ⊢ (𝜑 → 𝑁 ∈ 𝑀) ⇒ ⊢ (𝜑 → (𝐴 ∈ (ω ·o suc 𝐶) ∧ (ω ·o suc 𝐶) ⊆ 𝐵)) | ||
Theorem | naddwordnexlem1 43359 | When 𝐴 is the sum of a limit ordinal (or zero) and a natural number and 𝐵 is the sum of a larger limit ordinal and a smaller natural number, 𝐵 is equal to or larger than 𝐴. (Contributed by RP, 14-Feb-2025.) |
⊢ (𝜑 → 𝐴 = ((ω ·o 𝐶) +o 𝑀)) & ⊢ (𝜑 → 𝐵 = ((ω ·o 𝐷) +o 𝑁)) & ⊢ (𝜑 → 𝐶 ∈ 𝐷) & ⊢ (𝜑 → 𝐷 ∈ On) & ⊢ (𝜑 → 𝑀 ∈ ω) & ⊢ (𝜑 → 𝑁 ∈ 𝑀) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
Theorem | naddwordnexlem2 43360 | When 𝐴 is the sum of a limit ordinal (or zero) and a natural number and 𝐵 is the sum of a larger limit ordinal and a smaller natural number, 𝐵 is larger than 𝐴. (Contributed by RP, 14-Feb-2025.) |
⊢ (𝜑 → 𝐴 = ((ω ·o 𝐶) +o 𝑀)) & ⊢ (𝜑 → 𝐵 = ((ω ·o 𝐷) +o 𝑁)) & ⊢ (𝜑 → 𝐶 ∈ 𝐷) & ⊢ (𝜑 → 𝐷 ∈ On) & ⊢ (𝜑 → 𝑀 ∈ ω) & ⊢ (𝜑 → 𝑁 ∈ 𝑀) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐵) | ||
Theorem | naddwordnexlem3 43361* | When 𝐴 is the sum of a limit ordinal (or zero) and a natural number and 𝐵 is the sum of a larger limit ordinal and a smaller natural number, every natural sum of 𝐴 with a natural number is less that 𝐵. (Contributed by RP, 14-Feb-2025.) |
⊢ (𝜑 → 𝐴 = ((ω ·o 𝐶) +o 𝑀)) & ⊢ (𝜑 → 𝐵 = ((ω ·o 𝐷) +o 𝑁)) & ⊢ (𝜑 → 𝐶 ∈ 𝐷) & ⊢ (𝜑 → 𝐷 ∈ On) & ⊢ (𝜑 → 𝑀 ∈ ω) & ⊢ (𝜑 → 𝑁 ∈ 𝑀) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ ω (𝐴 +no 𝑥) ∈ 𝐵) | ||
Theorem | oawordex3 43362* | When 𝐴 is the sum of a limit ordinal (or zero) and a natural number and 𝐵 is the sum of a larger limit ordinal and a smaller natural number, some ordinal sum of 𝐴 is equal to 𝐵. This is a specialization of oawordex 8613. (Contributed by RP, 14-Feb-2025.) |
⊢ (𝜑 → 𝐴 = ((ω ·o 𝐶) +o 𝑀)) & ⊢ (𝜑 → 𝐵 = ((ω ·o 𝐷) +o 𝑁)) & ⊢ (𝜑 → 𝐶 ∈ 𝐷) & ⊢ (𝜑 → 𝐷 ∈ On) & ⊢ (𝜑 → 𝑀 ∈ ω) & ⊢ (𝜑 → 𝑁 ∈ 𝑀) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ On (𝐴 +o 𝑥) = 𝐵) | ||
Theorem | naddwordnexlem4 43363* | When 𝐴 is the sum of a limit ordinal (or zero) and a natural number and 𝐵 is the sum of a larger limit ordinal and a smaller natural number, there exists a product with omega such that the ordinal sum with 𝐴 is less than or equal to 𝐵 while the natural sum is larger than 𝐵. (Contributed by RP, 15-Feb-2025.) |
⊢ (𝜑 → 𝐴 = ((ω ·o 𝐶) +o 𝑀)) & ⊢ (𝜑 → 𝐵 = ((ω ·o 𝐷) +o 𝑁)) & ⊢ (𝜑 → 𝐶 ∈ 𝐷) & ⊢ (𝜑 → 𝐷 ∈ On) & ⊢ (𝜑 → 𝑀 ∈ ω) & ⊢ (𝜑 → 𝑁 ∈ 𝑀) & ⊢ 𝑆 = {𝑦 ∈ On ∣ 𝐷 ⊆ (𝐶 +o 𝑦)} ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (On ∖ 1o)((𝐶 +o 𝑥) = 𝐷 ∧ (𝐴 +o (ω ·o 𝑥)) ⊆ 𝐵 ∧ 𝐵 ∈ (𝐴 +no (ω ·o 𝑥)))) | ||
Theorem | ordsssucim 43364 | If an ordinal is less than or equal to the successor of another, then the first is either less than or equal to the second or the first is equal to the successor of the second. Theorem 1 in Grzegorz Bancerek, "Epsilon Numbers and Cantor Normal Form", Formalized Mathematics, Vol. 17, No. 4, Pages 249–256, 2009. DOI: 10.2478/v10037-009-0032-8 See also ordsssucb 43297 for a biimplication when 𝐴 is a set. (Contributed by RP, 3-Jan-2025.) |
⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ suc 𝐵 → (𝐴 ⊆ 𝐵 ∨ 𝐴 = suc 𝐵))) | ||
Theorem | insucid 43365 | The intersection of a class and its successor is itself. (Contributed by RP, 3-Jan-2025.) |
⊢ (𝐴 ∩ suc 𝐴) = 𝐴 | ||
Theorem | om2 43366 | Two ways to double an ordinal. (Contributed by RP, 3-Jan-2025.) |
⊢ (𝐴 ∈ On → (𝐴 +o 𝐴) = (𝐴 ·o 2o)) | ||
Theorem | oaltom 43367 | Multiplication eventually dominates addition. (Contributed by RP, 3-Jan-2025.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵) → (𝐵 +o 𝐴) ∈ (𝐵 ·o 𝐴))) | ||
Theorem | oe2 43368 | Two ways to square an ordinal. (Contributed by RP, 3-Jan-2025.) |
⊢ (𝐴 ∈ On → (𝐴 ·o 𝐴) = (𝐴 ↑o 2o)) | ||
Theorem | omltoe 43369 | Exponentiation eventually dominates multiplication. (Contributed by RP, 3-Jan-2025.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((1o ∈ 𝐴 ∧ 𝐴 ∈ 𝐵) → (𝐵 ·o 𝐴) ∈ (𝐵 ↑o 𝐴))) | ||
Theorem | abeqabi 43370 | Generalized condition for a class abstraction to be equal to some class. (Contributed by RP, 2-Sep-2024.) |
⊢ 𝐴 = {𝑥 ∣ 𝜓} ⇒ ⊢ ({𝑥 ∣ 𝜑} = 𝐴 ↔ ∀𝑥(𝜑 ↔ 𝜓)) | ||
Theorem | abpr 43371* | Condition for a class abstraction to be a pair. (Contributed by RP, 25-Aug-2024.) |
⊢ ({𝑥 ∣ 𝜑} = {𝑌, 𝑍} ↔ ∀𝑥(𝜑 ↔ (𝑥 = 𝑌 ∨ 𝑥 = 𝑍))) | ||
Theorem | abtp 43372* | Condition for a class abstraction to be a triple. (Contributed by RP, 25-Aug-2024.) |
⊢ ({𝑥 ∣ 𝜑} = {𝑋, 𝑌, 𝑍} ↔ ∀𝑥(𝜑 ↔ (𝑥 = 𝑋 ∨ 𝑥 = 𝑌 ∨ 𝑥 = 𝑍))) | ||
Theorem | ralopabb 43373* | Restricted universal quantification over an ordered-pair class abstraction. (Contributed by RP, 25-Sep-2024.) |
⊢ 𝑂 = {〈𝑥, 𝑦〉 ∣ 𝜑} & ⊢ (𝑜 = 〈𝑥, 𝑦〉 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (∀𝑜 ∈ 𝑂 𝜓 ↔ ∀𝑥∀𝑦(𝜑 → 𝜒)) | ||
Theorem | fpwfvss 43374 | Functions into a powerset always have values which are subsets. This is dependant on our convention when the argument is not part of the domain. (Contributed by RP, 13-Sep-2024.) |
⊢ 𝐹:𝐶⟶𝒫 𝐵 ⇒ ⊢ (𝐹‘𝐴) ⊆ 𝐵 | ||
Theorem | sdomne0 43375 | A class that strictly dominates any set is not empty. (Suggested by SN, 14-Jan-2025.) (Contributed by RP, 14-Jan-2025.) |
⊢ (𝐵 ≺ 𝐴 → 𝐴 ≠ ∅) | ||
Theorem | sdomne0d 43376 | A class that strictly dominates any set is not empty. (Contributed by RP, 3-Sep-2024.) |
⊢ (𝜑 → 𝐵 ≺ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐴 ≠ ∅) | ||
Theorem | safesnsupfiss 43377 | If 𝐵 is a finite subset of ordered class 𝐴, we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 1-Sep-2024.) |
⊢ (𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o)) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝑅 Or 𝐴) ⇒ ⊢ (𝜑 → if(𝑂 ≺ 𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) ⊆ 𝐵) | ||
Theorem | safesnsupfiub 43378* | If 𝐵 is a finite subset of ordered class 𝐴, we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 1-Sep-2024.) |
⊢ (𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o)) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 𝑥𝑅𝑦) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ if (𝑂 ≺ 𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)∀𝑦 ∈ 𝐶 𝑥𝑅𝑦) | ||
Theorem | safesnsupfidom1o 43379 | If 𝐵 is a finite subset of ordered class 𝐴, we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 1-Sep-2024.) |
⊢ (𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o)) & ⊢ (𝜑 → 𝐵 ∈ Fin) ⇒ ⊢ (𝜑 → if(𝑂 ≺ 𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) ≼ 1o) | ||
Theorem | safesnsupfilb 43380* | If 𝐵 is a finite subset of ordered class 𝐴, we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 3-Sep-2024.) |
⊢ (𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o)) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝑅 Or 𝐴) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ (𝐵 ∖ if(𝑂 ≺ 𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵))∀𝑦 ∈ if (𝑂 ≺ 𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)𝑥𝑅𝑦) | ||
Theorem | isoeq145d 43381 | Equality deduction for isometries. (Contributed by RP, 14-Jan-2025.) |
⊢ (𝜑 → 𝐹 = 𝐺) & ⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ (𝜑 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐶, 𝐷))) | ||
Theorem | resisoeq45d 43382 | Equality deduction for equally restricted isometries. (Contributed by RP, 14-Jan-2025.) |
⊢ (𝜑 → 𝐴 = 𝐶) & ⊢ (𝜑 → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → ((𝐹 ↾ 𝐴) Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐹 ↾ 𝐶) Isom 𝑅, 𝑆 (𝐶, 𝐷))) | ||
Theorem | negslem1 43383 | An equivalence between identically restricted order-reversing self-isometries. (Contributed by RP, 30-Sep-2024.) |
⊢ (𝐴 = 𝐵 → ((𝐹 ↾ 𝐴) Isom 𝑅, ◡𝑅(𝐴, 𝐴) ↔ (𝐹 ↾ 𝐵) Isom 𝑅, ◡𝑅(𝐵, 𝐵))) | ||
Theorem | nvocnvb 43384* | Equivalence to saying the converse of an involution is the function itself. (Contributed by RP, 13-Oct-2024.) |
⊢ ((𝐹 Fn 𝐴 ∧ ◡𝐹 = 𝐹) ↔ (𝐹:𝐴–1-1-onto→𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘(𝐹‘𝑥)) = 𝑥)) | ||
Theorem | rp-brsslt 43385* | Binary relation form of a relation, <, which has been extended from relation 𝑅 to subsets of class 𝑆. Usually, we will assume 𝑅 Or 𝑆. Definition in [Alling], p. 2. Generalization of brsslt 27848. (Originally by Scott Fenton, 8-Dec-2021.) (Contributed by RP, 28-Nov-2023.) |
⊢ < = {〈𝑎, 𝑏〉 ∣ (𝑎 ⊆ 𝑆 ∧ 𝑏 ⊆ 𝑆 ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 𝑥𝑅𝑦)} ⇒ ⊢ (𝐴 < 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ 𝑆 ∧ 𝐵 ⊆ 𝑆 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥𝑅𝑦))) | ||
Theorem | nla0002 43386* | Extending a linear order to subsets, the empty set is less than any subset. Note in [Alling], p. 3. (Contributed by RP, 28-Nov-2023.) |
⊢ < = {〈𝑎, 𝑏〉 ∣ (𝑎 ⊆ 𝑆 ∧ 𝑏 ⊆ 𝑆 ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 𝑥𝑅𝑦)} & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) ⇒ ⊢ (𝜑 → ∅ < 𝐴) | ||
Theorem | nla0003 43387* | Extending a linear order to subsets, the empty set is greater than any subset. Note in [Alling], p. 3. (Contributed by RP, 28-Nov-2023.) |
⊢ < = {〈𝑎, 𝑏〉 ∣ (𝑎 ⊆ 𝑆 ∧ 𝑏 ⊆ 𝑆 ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 𝑥𝑅𝑦)} & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝐴 ⊆ 𝑆) ⇒ ⊢ (𝜑 → 𝐴 < ∅) | ||
Theorem | nla0001 43388* | Extending a linear order to subsets, the empty set is less than itself. Note in [Alling], p. 3. (Contributed by RP, 28-Nov-2023.) |
⊢ < = {〈𝑎, 𝑏〉 ∣ (𝑎 ⊆ 𝑆 ∧ 𝑏 ⊆ 𝑆 ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 𝑥𝑅𝑦)} ⇒ ⊢ (𝜑 → ∅ < ∅) | ||
Theorem | faosnf0.11b 43389* |
𝐵
is called a non-limit ordinal if it is not a limit ordinal.
(Contributed by RP, 27-Sep-2023.)
Alling, Norman L. "Fundamentals of Analysis Over Surreal Numbers Fields." The Rocky Mountain Journal of Mathematics 19, no. 3 (1989): 565-73. http://www.jstor.org/stable/44237243. |
⊢ ((Ord 𝐴 ∧ ¬ Lim 𝐴 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥) | ||
Theorem | dfno2 43390 | A surreal number, in the functional sign expansion representation, is a function which maps from an ordinal into a set of two possible signs. (Contributed by RP, 12-Jan-2025.) |
⊢ No = {𝑓 ∈ 𝒫 (On × {1o, 2o}) ∣ (Fun 𝑓 ∧ dom 𝑓 ∈ On)} | ||
Theorem | onnog 43391 | Every ordinal maps to a surreal number. (Contributed by RP, 21-Sep-2023.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o}) → (𝐴 × {𝐵}) ∈ No ) | ||
Theorem | onnobdayg 43392 | Every ordinal maps to a surreal number of that birthday. (Contributed by RP, 21-Sep-2023.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ {1o, 2o}) → ( bday ‘(𝐴 × {𝐵})) = 𝐴) | ||
Theorem | bdaybndex 43393 | Bounds formed from the birthday are surreal numbers. (Contributed by RP, 21-Sep-2023.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴) ∧ 𝐶 ∈ {1o, 2o}) → (𝐵 × {𝐶}) ∈ No ) | ||
Theorem | bdaybndbday 43394 | Bounds formed from the birthday have the same birthday. (Contributed by RP, 30-Sep-2023.) |
⊢ ((𝐴 ∈ No ∧ 𝐵 = ( bday ‘𝐴) ∧ 𝐶 ∈ {1o, 2o}) → ( bday ‘(𝐵 × {𝐶})) = ( bday ‘𝐴)) | ||
Theorem | onno 43395 | Every ordinal maps to a surreal number. (Contributed by RP, 21-Sep-2023.) |
⊢ (𝐴 ∈ On → (𝐴 × {2o}) ∈ No ) | ||
Theorem | onnoi 43396 | Every ordinal maps to a surreal number. (Contributed by RP, 21-Sep-2023.) |
⊢ 𝐴 ∈ On ⇒ ⊢ (𝐴 × {2o}) ∈ No | ||
Theorem | 0no 43397 | Ordinal zero maps to a surreal number. (Contributed by RP, 21-Sep-2023.) |
⊢ ∅ ∈ No | ||
Theorem | 1no 43398 | Ordinal one maps to a surreal number. (Contributed by RP, 21-Sep-2023.) |
⊢ (1o × {2o}) ∈ No | ||
Theorem | 2no 43399 | Ordinal two maps to a surreal number. (Contributed by RP, 21-Sep-2023.) |
⊢ (2o × {2o}) ∈ No | ||
Theorem | 3no 43400 | Ordinal three maps to a surreal number. (Contributed by RP, 21-Sep-2023.) |
⊢ (3o × {2o}) ∈ No |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |