|  Home | Metamath
Proof Explorer Theorem List (p. 434 of 494) | < Previous Next > | 
| Bad symbols? Try the GIF version. | ||
| Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List | ||
| Color key: |  Metamath Proof Explorer (1-30938) |  Hilbert Space Explorer (30939-32461) |  Users' Mathboxes (32462-49379) | 
| Type | Label | Description | 
|---|---|---|
| Statement | ||
| Theorem | limexissupab 43301* | An ordinal which is a limit ordinal is equal to the supremum of the class of all its elements. Lemma 2.13 of [Schloeder] p. 5. (Contributed by RP, 27-Jan-2025.) | 
| ⊢ ((Lim 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐴 = sup({𝑥 ∣ 𝑥 ∈ 𝐴}, On, E )) | ||
| Theorem | om1om1r 43302 | Ordinal one is both a left and right identity of ordinal multiplication. Lemma 2.15 of [Schloeder] p. 5. See om1 8581 and om1r 8582 for individual statements. (Contributed by RP, 29-Jan-2025.) | 
| ⊢ (𝐴 ∈ On → ((1o ·o 𝐴) = (𝐴 ·o 1o) ∧ (𝐴 ·o 1o) = 𝐴)) | ||
| Theorem | oe0rif 43303 | Ordinal zero raised to any non-zero ordinal power is zero and zero to the zeroth power is one. Lemma 2.18 of [Schloeder] p. 6. (Contributed by RP, 29-Jan-2025.) | 
| ⊢ (𝐴 ∈ On → (∅ ↑o 𝐴) = if(∅ ∈ 𝐴, ∅, 1o)) | ||
| Theorem | oasubex 43304* | While subtraction can't be a binary operation on ordinals, for any pair of ordinals there exists an ordinal that can be added to the lessor (or equal) one which will sum to the greater. Theorem 2.19 of [Schloeder] p. 6. (Contributed by RP, 29-Jan-2025.) | 
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴) → ∃𝑐 ∈ On (𝑐 ⊆ 𝐴 ∧ (𝐵 +o 𝑐) = 𝐴)) | ||
| Theorem | nnamecl 43305 | Natural numbers are closed under ordinal addition, multiplication, and exponentiation. Theorem 2.20 of [Schloeder] p. 6. See nnacl 8650, nnmcl 8651, nnecl 8652. (Contributed by RP, 29-Jan-2025.) | 
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 +o 𝐵) ∈ ω ∧ (𝐴 ·o 𝐵) ∈ ω ∧ (𝐴 ↑o 𝐵) ∈ ω)) | ||
| Theorem | onsucwordi 43306 | The successor operation preserves the less-than-or-equal relationship between ordinals. Lemma 3.1 of [Schloeder] p. 7. (Contributed by RP, 29-Jan-2025.) | 
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → suc 𝐴 ⊆ suc 𝐵)) | ||
| Theorem | oalim2cl 43307 | The ordinal sum of any ordinal with a limit ordinal on the right is a limit ordinal. (Contributed by RP, 6-Feb-2025.) | 
| ⊢ ((𝐴 ∈ On ∧ Lim 𝐵 ∧ 𝐵 ∈ 𝑉) → Lim (𝐴 +o 𝐵)) | ||
| Theorem | oaltublim 43308 | Given 𝐶 is a limit ordinal, the sum of any ordinal with an ordinal less than 𝐶 is less than the sum of the first ordinal with 𝐶. Lemma 3.5 of [Schloeder] p. 7. (Contributed by RP, 29-Jan-2025.) | 
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐶 ∧ (Lim 𝐶 ∧ 𝐶 ∈ 𝑉)) → (𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶)) | ||
| Theorem | oaordi3 43309 | Ordinal addition of the same number on the left preserves the ordering of the numbers on the right. Lemma 3.6 of [Schloeder] p. 8. (Contributed by RP, 29-Jan-2025.) | 
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∈ 𝐶 → (𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶))) | ||
| Theorem | oaord3 43310 | When the same ordinal is added on the left, ordering of the sums is equivalent to the ordering of the ordinals on the right. Theorem 3.7 of [Schloeder] p. 8. (Contributed by RP, 29-Jan-2025.) | 
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∈ 𝐶 ↔ (𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶))) | ||
| Theorem | 1oaomeqom 43311 | Ordinal one plus omega is equal to omega. See oaabs 8687 for the sum of any natural number on the left and ordinal at least as large as omega on the right. Lemma 3.8 of [Schloeder] p. 8. See oaabs2 8688 where a power of omega is the upper bound of the left and a lower bound on the right. (Contributed by RP, 29-Jan-2025.) | 
| ⊢ (1o +o ω) = ω | ||
| Theorem | oaabsb 43312 | The right addend absorbs the sum with an ordinal iff that ordinal times omega is less than or equal to the right addend. (Contributed by RP, 19-Feb-2025.) | 
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o ω) ⊆ 𝐵 ↔ (𝐴 +o 𝐵) = 𝐵)) | ||
| Theorem | oaordnrex 43313 | When omega is added on the right to ordinals zero and one, ordering of the sums is not equivalent to the ordering of the ordinals on the left. Remark 3.9 of [Schloeder] p. 8. (Contributed by RP, 29-Jan-2025.) | 
| ⊢ ¬ (∅ ∈ 1o ↔ (∅ +o ω) ∈ (1o +o ω)) | ||
| Theorem | oaordnr 43314* | When the same ordinal is added on the right, ordering of the sums is not equivalent to the ordering of the ordinals on the left. Remark 3.9 of [Schloeder] p. 8. (Contributed by RP, 29-Jan-2025.) | 
| ⊢ ∃𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (𝑎 ∈ 𝑏 ↔ (𝑎 +o 𝑐) ∈ (𝑏 +o 𝑐)) | ||
| Theorem | omge1 43315 | Any non-zero ordinal product is greater-than-or-equal to the term on the left. Lemma 3.11 of [Schloeder] p. 8. See omword1 8612. (Contributed by RP, 29-Jan-2025.) | 
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐴 ⊆ (𝐴 ·o 𝐵)) | ||
| Theorem | omge2 43316 | Any non-zero ordinal product is greater-than-or-equal to the term on the right. Lemma 3.12 of [Schloeder] p. 9. See omword2 8613. (Contributed by RP, 29-Jan-2025.) | 
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → 𝐵 ⊆ (𝐴 ·o 𝐵)) | ||
| Theorem | omlim2 43317 | The non-zero product with an limit ordinal on the right is a limit ordinal. Lemma 3.13 of [Schloeder] p. 9. (Contributed by RP, 29-Jan-2025.) | 
| ⊢ (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (Lim 𝐵 ∧ 𝐵 ∈ 𝑉)) → Lim (𝐴 ·o 𝐵)) | ||
| Theorem | omord2lim 43318 | Given a limit ordinal, the product of any non-zero ordinal with an ordinal less than that limit ordinal is less than the product of the non-zero ordinal with the limit ordinal . Lemma 3.14 of [Schloeder] p. 9. (Contributed by RP, 29-Jan-2025.) | 
| ⊢ (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (Lim 𝐶 ∧ 𝐶 ∈ 𝑉)) → (𝐵 ∈ 𝐶 → (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶))) | ||
| Theorem | omord2i 43319 | Ordinal multiplication of the same non-zero number on the left preserves the ordering of the numbers on the right. Lemma 3.15 of [Schloeder] p. 9. (Contributed by RP, 29-Jan-2025.) | 
| ⊢ (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ 𝐶 ∈ On) → (𝐵 ∈ 𝐶 → (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶))) | ||
| Theorem | omord2com 43320 | When the same non-zero ordinal is multiplied on the left, ordering of the products is equivalent to the ordering of the ordinals on the right. Theorem 3.16 of [Schloeder] p. 9. (Contributed by RP, 29-Jan-2025.) | 
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵 ∈ 𝐶 ∧ ∅ ∈ 𝐴) ↔ (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶))) | ||
| Theorem | 2omomeqom 43321 | Ordinal two times omega is omega. Lemma 3.17 of [Schloeder] p. 10. (Contributed by RP, 30-Jan-2025.) | 
| ⊢ (2o ·o ω) = ω | ||
| Theorem | omnord1ex 43322 | When omega is multiplied on the right to ordinals one and two, ordering of the products is not equivalent to the ordering of the ordinals on the left. Remark 3.18 of [Schloeder] p. 10. (Contributed by RP, 29-Jan-2025.) | 
| ⊢ ¬ (1o ∈ 2o ↔ (1o ·o ω) ∈ (2o ·o ω)) | ||
| Theorem | omnord1 43323* | When the same non-zero ordinal is multiplied on the right, ordering of the products is not equivalent to the ordering of the ordinals on the left. Remark 3.18 of [Schloeder] p. 10. (Contributed by RP, 4-Feb-2025.) | 
| ⊢ ∃𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎 ∈ 𝑏 ↔ (𝑎 ·o 𝑐) ∈ (𝑏 ·o 𝑐)) | ||
| Theorem | oege1 43324 | Any non-zero ordinal power is greater-than-or-equal to the term on the left. Lemma 3.19 of [Schloeder] p. 10. See oewordi 8630. (Contributed by RP, 29-Jan-2025.) | 
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐴 ⊆ (𝐴 ↑o 𝐵)) | ||
| Theorem | oege2 43325 | Any power of an ordinal at least as large as two is greater-than-or-equal to the term on the right. Lemma 3.20 of [Schloeder] p. 10. See oeworde 8632. (Contributed by RP, 29-Jan-2025.) | 
| ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (𝐴 ↑o 𝐵)) | ||
| Theorem | rp-oelim2 43326 | The power of an ordinal at least as large as two with a limit ordinal on thr right is a limit ordinal. Lemma 3.21 of [Schloeder] p. 10. See oelimcl 8639. (Contributed by RP, 30-Jan-2025.) | 
| ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ (Lim 𝐵 ∧ 𝐵 ∈ 𝑉)) → Lim (𝐴 ↑o 𝐵)) | ||
| Theorem | oeord2lim 43327 | Given a limit ordinal, the power of any base at least as large as two raised to an ordinal less than that limit ordinal is less than the power of that base raised to the limit ordinal . Lemma 3.22 of [Schloeder] p. 10. See oeordi 8626. (Contributed by RP, 30-Jan-2025.) | 
| ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ (Lim 𝐶 ∧ 𝐶 ∈ 𝑉)) → (𝐵 ∈ 𝐶 → (𝐴 ↑o 𝐵) ∈ (𝐴 ↑o 𝐶))) | ||
| Theorem | oeord2i 43328 | Ordinal exponentiation of the same base at least as large as two preserves the ordering of the exponents. Lemma 3.23 of [Schloeder] p. 11. (Contributed by RP, 30-Jan-2025.) | 
| ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐶 ∈ On) → (𝐵 ∈ 𝐶 → (𝐴 ↑o 𝐵) ∈ (𝐴 ↑o 𝐶))) | ||
| Theorem | oeord2com 43329 | When the same base at least as large as two is raised to ordinal powers, , ordering of the power is equivalent to the ordering of the exponents. Theorem 3.24 of [Schloeder] p. 11. (Contributed by RP, 30-Jan-2025.) | 
| ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∈ 𝐶 ↔ (𝐴 ↑o 𝐵) ∈ (𝐴 ↑o 𝐶))) | ||
| Theorem | nnoeomeqom 43330 | Any natural number at least as large as two raised to the power of omega is omega. Lemma 3.25 of [Schloeder] p. 11. (Contributed by RP, 30-Jan-2025.) | 
| ⊢ ((𝐴 ∈ ω ∧ 1o ∈ 𝐴) → (𝐴 ↑o ω) = ω) | ||
| Theorem | df3o2 43331 | Ordinal 3 is the unordered triple containing ordinals 0, 1, and 2. (Contributed by RP, 8-Jul-2021.) | 
| ⊢ 3o = {∅, 1o, 2o} | ||
| Theorem | df3o3 43332 | Ordinal 3, fully expanded. (Contributed by RP, 8-Jul-2021.) | 
| ⊢ 3o = {∅, {∅}, {∅, {∅}}} | ||
| Theorem | oenord1ex 43333 | When ordinals two and three are both raised to the power of omega, ordering of the powers is not equivalent to the ordering of the bases. Remark 3.26 of [Schloeder] p. 11. (Contributed by RP, 30-Jan-2025.) | 
| ⊢ ¬ (2o ∈ 3o ↔ (2o ↑o ω) ∈ (3o ↑o ω)) | ||
| Theorem | oenord1 43334* | When two ordinals (both at least as large as two) are raised to the same power, ordering of the powers is not equivalent to the ordering of the bases. Remark 3.26 of [Schloeder] p. 11. (Contributed by RP, 4-Feb-2025.) | 
| ⊢ ∃𝑎 ∈ (On ∖ 2o)∃𝑏 ∈ (On ∖ 2o)∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎 ∈ 𝑏 ↔ (𝑎 ↑o 𝑐) ∈ (𝑏 ↑o 𝑐)) | ||
| Theorem | oaomoencom 43335* | Ordinal addition, multiplication, and exponentiation do not generally commute. Theorem 4.1 of [Schloeder] p. 11. (Contributed by RP, 30-Jan-2025.) | 
| ⊢ (∃𝑎 ∈ On ∃𝑏 ∈ On ¬ (𝑎 +o 𝑏) = (𝑏 +o 𝑎) ∧ ∃𝑎 ∈ On ∃𝑏 ∈ On ¬ (𝑎 ·o 𝑏) = (𝑏 ·o 𝑎) ∧ ∃𝑎 ∈ On ∃𝑏 ∈ On ¬ (𝑎 ↑o 𝑏) = (𝑏 ↑o 𝑎)) | ||
| Theorem | oenassex 43336 | Ordinal two raised to two to the zeroth power is not the same as two squared then raised to the zeroth power. (Contributed by RP, 30-Jan-2025.) | 
| ⊢ ¬ (2o ↑o (2o ↑o ∅)) = ((2o ↑o 2o) ↑o ∅) | ||
| Theorem | oenass 43337* | Ordinal exponentiation is not associative. Remark 4.6 of [Schloeder] p. 14. (Contributed by RP, 30-Jan-2025.) | 
| ⊢ ∃𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (𝑎 ↑o (𝑏 ↑o 𝑐)) = ((𝑎 ↑o 𝑏) ↑o 𝑐) | ||
| Theorem | cantnftermord 43338 | For terms of the form of a power of omega times a non-zero natural number, ordering of the exponents implies ordering of the terms. Lemma 5.1 of [Schloeder] p. 15. (Contributed by RP, 30-Jan-2025.) | 
| ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) → (𝐴 ∈ 𝐵 → ((ω ↑o 𝐴) ·o 𝐶) ∈ ((ω ↑o 𝐵) ·o 𝐷))) | ||
| Theorem | cantnfub 43339* | Given a finite number of terms of the form ((ω ↑o (𝐴‘𝑛)) ·o (𝑀‘𝑛)) with distinct exponents, we may order them from largest to smallest and find the sum is less than (ω ↑o 𝑋) when (𝐴‘𝑛) is less than 𝑋 and (𝑀‘𝑛) is less than ω. Lemma 5.2 of [Schloeder] p. 15. (Contributed by RP, 31-Jan-2025.) | 
| ⊢ (𝜑 → 𝑋 ∈ On) & ⊢ (𝜑 → 𝑁 ∈ ω) & ⊢ (𝜑 → 𝐴:𝑁–1-1→𝑋) & ⊢ (𝜑 → 𝑀:𝑁⟶ω) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ if(𝑥 ∈ ran 𝐴, (𝑀‘(◡𝐴‘𝑥)), ∅)) ⇒ ⊢ (𝜑 → (𝐹 ∈ dom (ω CNF 𝑋) ∧ ((ω CNF 𝑋)‘𝐹) ∈ (ω ↑o 𝑋))) | ||
| Theorem | cantnfub2 43340* | Given a finite number of terms of the form ((ω ↑o (𝐴‘𝑛)) ·o (𝑀‘𝑛)) with distinct exponents, we may order them from largest to smallest and find the sum is less than (ω ↑o suc ∪ ran 𝐴) when (𝑀‘𝑛) is less than ω. Lemma 5.2 of [Schloeder] p. 15. (Contributed by RP, 9-Feb-2025.) | 
| ⊢ (𝜑 → 𝑁 ∈ ω) & ⊢ (𝜑 → 𝐴:𝑁–1-1→On) & ⊢ (𝜑 → 𝑀:𝑁⟶ω) & ⊢ 𝐹 = (𝑥 ∈ suc ∪ ran 𝐴 ↦ if(𝑥 ∈ ran 𝐴, (𝑀‘(◡𝐴‘𝑥)), ∅)) ⇒ ⊢ (𝜑 → (suc ∪ ran 𝐴 ∈ On ∧ 𝐹 ∈ dom (ω CNF suc ∪ ran 𝐴) ∧ ((ω CNF suc ∪ ran 𝐴)‘𝐹) ∈ (ω ↑o suc ∪ ran 𝐴))) | ||
| Theorem | bropabg 43341* | Equivalence for two classes related by an ordered-pair class abstraction. A generalization of brsslt 27831. (Contributed by RP, 26-Sep-2024.) | 
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} ⇒ ⊢ (𝐴𝑅𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜒)) | ||
| Theorem | cantnfresb 43342* | A Cantor normal form which sums to less than a certain power has only zeros for larger components. (Contributed by RP, 3-Feb-2025.) | 
| ⊢ (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) → (((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴 ↑o 𝐶) ↔ ∀𝑥 ∈ (𝐵 ∖ 𝐶)(𝐹‘𝑥) = ∅)) | ||
| Theorem | cantnf2 43343* | For every ordinal, 𝐴, there is a an ordinal exponent 𝑏 such that 𝐴 is less than (ω ↑o 𝑏) and for every ordinal at least as large as 𝑏 there is a unique Cantor normal form, 𝑓, with zeros for all the unnecessary higher terms, that sums to 𝐴. Theorem 5.3 of [Schloeder] p. 16. (Contributed by RP, 3-Feb-2025.) | 
| ⊢ (𝐴 ∈ On → ∃𝑏 ∈ On ∀𝑐 ∈ (On ∖ 𝑏)∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓 ↾ 𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴))) | ||
| Theorem | oawordex2 43344* | If 𝐶 is between 𝐴 (inclusive) and (𝐴 +o 𝐵) (exclusive), there is an ordinal which equals 𝐶 when summed to 𝐴. This is a slightly different statement than oawordex 8596 or oawordeu 8594. (Contributed by RP, 7-Jan-2025.) | 
| ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) → ∃𝑥 ∈ 𝐵 (𝐴 +o 𝑥) = 𝐶) | ||
| Theorem | nnawordexg 43345* | If an ordinal, 𝐵, is in a half-open interval between some 𝐴 and the next limit ordinal, 𝐵 is the sum of the 𝐴 and some natural number. This weakens the antecedent of nnawordex 8676. (Contributed by RP, 7-Jan-2025.) | 
| ⊢ ((𝐴 ∈ On ∧ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ (𝐴 +o ω)) → ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵) | ||
| Theorem | succlg 43346 | Closure law for ordinal successor. (Contributed by RP, 8-Jan-2025.) | 
| ⊢ ((𝐴 ∈ 𝐵 ∧ (𝐵 = ∅ ∨ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o)))) → suc 𝐴 ∈ 𝐵) | ||
| Theorem | dflim5 43347* | A limit ordinal is either the proper class of ordinals or some nonzero product with omega. (Contributed by RP, 8-Jan-2025.) | 
| ⊢ (Lim 𝐴 ↔ (𝐴 = On ∨ ∃𝑥 ∈ (On ∖ 1o)𝐴 = (ω ·o 𝑥))) | ||
| Theorem | oacl2g 43348 | Closure law for ordinal addition. Here we show that ordinal addition is closed within the empty set or any ordinal power of omega. (Contributed by RP, 5-Jan-2025.) | 
| ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ (𝐶 = ∅ ∨ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On))) → (𝐴 +o 𝐵) ∈ 𝐶) | ||
| Theorem | onmcl 43349 | If an ordinal is less than a power of omega, the product with a natural number is also less than that power of omega. (Contributed by RP, 19-Feb-2025.) | 
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) → (𝐴 ∈ (ω ↑o 𝐵) → (𝐴 ·o 𝑁) ∈ (ω ↑o 𝐵))) | ||
| Theorem | omabs2 43350 | Ordinal multiplication by a larger ordinal is absorbed when the larger ordinal is either 2 or ω raised to some power of ω. (Contributed by RP, 12-Jan-2025.) | 
| ⊢ (((𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴) ∧ (𝐵 = ∅ ∨ 𝐵 = 2o ∨ (𝐵 = (ω ↑o (ω ↑o 𝐶)) ∧ 𝐶 ∈ On))) → (𝐴 ·o 𝐵) = 𝐵) | ||
| Theorem | omcl2 43351 | Closure law for ordinal multiplication. (Contributed by RP, 12-Jan-2025.) | 
| ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ (𝐶 = ∅ ∨ (𝐶 = (ω ↑o (ω ↑o 𝐷)) ∧ 𝐷 ∈ On))) → (𝐴 ·o 𝐵) ∈ 𝐶) | ||
| Theorem | omcl3g 43352 | Closure law for ordinal multiplication. (Contributed by RP, 14-Jan-2025.) | 
| ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ (𝐶 ∈ 3o ∨ (𝐶 = (ω ↑o (ω ↑o 𝐷)) ∧ 𝐷 ∈ On))) → (𝐴 ·o 𝐵) ∈ 𝐶) | ||
| Theorem | ordsssucb 43353 | An ordinal number is less than or equal to the successor of an ordinal class iff the ordinal number is either less than or equal to the ordinal class or the ordinal number is equal to the successor of the ordinal class. See also ordsssucim 43420, limsssuc 7872. (Contributed by RP, 22-Feb-2025.) | 
| ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ⊆ suc 𝐵 ↔ (𝐴 ⊆ 𝐵 ∨ 𝐴 = suc 𝐵))) | ||
| Theorem | tfsconcatlem 43354* | Lemma for tfsconcatun 43355. (Contributed by RP, 23-Feb-2025.) | 
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃!𝑥∃𝑦 ∈ 𝐵 (𝐶 = (𝐴 +o 𝑦) ∧ 𝑥 = (𝐹‘𝑦))) | ||
| Theorem | tfsconcatun 43355* | The concatenation of two transfinite series is a union of functions. (Contributed by RP, 23-Feb-2025.) | 
| ⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 + 𝐵) = (𝐴 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))})) | ||
| Theorem | tfsconcatfn 43356* | The concatenation of two transfinite series is a transfinite series. (Contributed by RP, 22-Feb-2025.) | 
| ⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 + 𝐵) Fn (𝐶 +o 𝐷)) | ||
| Theorem | tfsconcatfv1 43357* | An early value of the concatenation of two transfinite series. (Contributed by RP, 23-Feb-2025.) | 
| ⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ 𝐶) → ((𝐴 + 𝐵)‘𝑋) = (𝐴‘𝑋)) | ||
| Theorem | tfsconcatfv2 43358* | A latter value of the concatenation of two transfinite series. (Contributed by RP, 23-Feb-2025.) | 
| ⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ 𝐷) → ((𝐴 + 𝐵)‘(𝐶 +o 𝑋)) = (𝐵‘𝑋)) | ||
| Theorem | tfsconcatfv 43359* | The value of the concatenation of two transfinite series. (Contributed by RP, 24-Feb-2025.) | 
| ⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ ((((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) ∧ 𝑋 ∈ (𝐶 +o 𝐷)) → ((𝐴 + 𝐵)‘𝑋) = if(𝑋 ∈ 𝐶, (𝐴‘𝑋), (𝐵‘(℩𝑑 ∈ 𝐷 (𝐶 +o 𝑑) = 𝑋)))) | ||
| Theorem | tfsconcatrn 43360* | The range of the concatenation of two transfinite series. (Contributed by RP, 24-Feb-2025.) | 
| ⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ran (𝐴 + 𝐵) = (ran 𝐴 ∪ ran 𝐵)) | ||
| Theorem | tfsconcatfo 43361* | The concatenation of two transfinite series is onto the union of the ranges. (Contributed by RP, 24-Feb-2025.) | 
| ⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 + 𝐵):(𝐶 +o 𝐷)–onto→(ran 𝐴 ∪ ran 𝐵)) | ||
| Theorem | tfsconcatb0 43362* | The concatentation with the empty series leaves the series unchanged. (Contributed by RP, 25-Feb-2025.) | 
| ⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐵 = ∅ ↔ (𝐴 + 𝐵) = 𝐴)) | ||
| Theorem | tfsconcat0i 43363* | The concatentation with the empty series leaves the series unchanged. (Contributed by RP, 28-Feb-2025.) | 
| ⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 = ∅ → (𝐴 + 𝐵) = 𝐵)) | ||
| Theorem | tfsconcat0b 43364* | The concatentation with the empty series leaves the finite series unchanged. (Contributed by RP, 1-Mar-2025.) | 
| ⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ ω)) → (𝐴 = ∅ ↔ (𝐴 + 𝐵) = 𝐵)) | ||
| Theorem | tfsconcat00 43365* | The concatentation of two empty series results in an empty series. (Contributed by RP, 25-Feb-2025.) | 
| ⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ((𝐴 = ∅ ∧ 𝐵 = ∅) ↔ (𝐴 + 𝐵) = ∅)) | ||
| Theorem | tfsconcatrev 43366* | If the domain of a transfinite sequence is an ordinal sum, the sequence can be decomposed into two sequences with domains corresponding to the addends. Theorem 2 in Grzegorz Bancerek, "Epsilon Numbers and Cantor Normal Form", Formalized Mathematics, Vol. 17, No. 4, Pages 249–256, 2009. DOI: 10.2478/v10037-009-0032-8 (Contributed by RP, 2-Mar-2025.) | 
| ⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ ((𝐹 Fn (𝐶 +o 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → ∃𝑢 ∈ (ran 𝐹 ↑m 𝐶)∃𝑣 ∈ (ran 𝐹 ↑m 𝐷)((𝑢 + 𝑣) = 𝐹 ∧ dom 𝑢 = 𝐶 ∧ dom 𝑣 = 𝐷)) | ||
| Theorem | tfsconcatrnss12 43367* | The range of the concatenation of transfinite sequences is a superset of the ranges of both sequences. Theorem 3 in Grzegorz Bancerek, "Epsilon Numbers and Cantor Normal Form", Formalized Mathematics, Vol. 17, No. 4, Pages 249–256, 2009. DOI: 10.2478/v10037-009-0032-8 (Contributed by RP, 2-Mar-2025.) | 
| ⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (ran 𝐴 ⊆ ran (𝐴 + 𝐵) ∧ ran 𝐵 ⊆ ran (𝐴 + 𝐵))) | ||
| Theorem | tfsconcatrnss 43368* | The concatenation of transfinite sequences yields elements from a class iff both sequences yield elements from that class. (Contributed by RP, 2-Mar-2025.) | 
| ⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (ran (𝐴 + 𝐵) ⊆ 𝑋 ↔ (ran 𝐴 ⊆ 𝑋 ∧ ran 𝐵 ⊆ 𝑋))) | ||
| Theorem | tfsconcatrnsson 43369* | The concatenation of transfinite sequences yields ordinals iff both sequences yield ordinals. Theorem 4 in Grzegorz Bancerek, "Epsilon Numbers and Cantor Normal Form", Formalized Mathematics, Vol. 17, No. 4, Pages 249–256, 2009. DOI: 10.2478/v10037-009-0032-8 (Contributed by RP, 2-Mar-2025.) | 
| ⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (ran (𝐴 + 𝐵) ⊆ On ↔ (ran 𝐴 ⊆ On ∧ ran 𝐵 ⊆ On))) | ||
| Theorem | tfsnfin 43370 | A transfinite sequence is infinite iff its domain is greater than or equal to omega. Theorem 5 in Grzegorz Bancerek, "Epsilon Numbers and Cantor Normal Form", Formalized Mathematics, Vol. 17, No. 4, Pages 249–256, 2009. DOI: 10.2478/v10037-009-0032-8 (Contributed by RP, 1-Mar-2025.) | 
| ⊢ ((𝐴 Fn 𝐵 ∧ 𝐵 ∈ On) → (¬ 𝐴 ∈ Fin ↔ ω ⊆ 𝐵)) | ||
| Theorem | rp-tfslim 43371* | The limit of a sequence of ordinals is the union of its range. (Contributed by RP, 1-Mar-2025.) | 
| ⊢ (𝐴 Fn 𝐵 → ∪ 𝑥 ∈ 𝐵 (𝐴‘𝑥) = ∪ ran 𝐴) | ||
| Theorem | ofoafg 43372* | Addition operator for functions from sets into ordinals results in a function from the intersection of sets into an ordinal. (Contributed by RP, 5-Jan-2025.) | 
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 (𝑑 +o 𝐸))) → ( ∘f +o ↾ ((𝐷 ↑m 𝐴) × (𝐸 ↑m 𝐵))):((𝐷 ↑m 𝐴) × (𝐸 ↑m 𝐵))⟶(𝐹 ↑m 𝐶)) | ||
| Theorem | ofoaf 43373 | Addition operator for functions from sets into power of omega results in a function from the intersection of sets to that power of omega. (Contributed by RP, 5-Jan-2025.) | 
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = (𝐴 ∩ 𝐵)) ∧ (𝐷 ∈ On ∧ 𝐸 = (ω ↑o 𝐷))) → ( ∘f +o ↾ ((𝐸 ↑m 𝐴) × (𝐸 ↑m 𝐵))):((𝐸 ↑m 𝐴) × (𝐸 ↑m 𝐵))⟶(𝐸 ↑m 𝐶)) | ||
| Theorem | ofoafo 43374 | Addition operator for functions from a set into a power of omega is an onto binary operator. (Contributed by RP, 5-Jan-2025.) | 
| ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) → ( ∘f +o ↾ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐴))):((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐴))–onto→(𝐶 ↑m 𝐴)) | ||
| Theorem | ofoacl 43375 | Closure law for component wise addition of ordinal-yielding functions. (Contributed by RP, 5-Jan-2025.) | 
| ⊢ (((𝐴 ∈ 𝑉 ∧ (𝐵 ∈ On ∧ 𝐶 = (ω ↑o 𝐵))) ∧ (𝐹 ∈ (𝐶 ↑m 𝐴) ∧ 𝐺 ∈ (𝐶 ↑m 𝐴))) → (𝐹 ∘f +o 𝐺) ∈ (𝐶 ↑m 𝐴)) | ||
| Theorem | ofoaid1 43376 | Identity law for component wise addition of ordinal-yielding functions. (Contributed by RP, 5-Jan-2025.) | 
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ 𝐹 ∈ (𝐵 ↑m 𝐴)) → (𝐹 ∘f +o (𝐴 × {∅})) = 𝐹) | ||
| Theorem | ofoaid2 43377 | Identity law for component wise addition of ordinal-yielding functions. (Contributed by RP, 5-Jan-2025.) | 
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ 𝐹 ∈ (𝐵 ↑m 𝐴)) → ((𝐴 × {∅}) ∘f +o 𝐹) = 𝐹) | ||
| Theorem | ofoaass 43378 | Component-wise addition of ordinal-yielding functions is associative. (Contributed by RP, 5-Jan-2025.) | 
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ 𝐺 ∈ (𝐵 ↑m 𝐴) ∧ 𝐻 ∈ (𝐵 ↑m 𝐴))) → ((𝐹 ∘f +o 𝐺) ∘f +o 𝐻) = (𝐹 ∘f +o (𝐺 ∘f +o 𝐻))) | ||
| Theorem | ofoacom 43379 | Component-wise addition of natural numnber-yielding functions commutes. (Contributed by RP, 5-Jan-2025.) | 
| ⊢ ((𝐴 ∈ 𝑉 ∧ (𝐹 ∈ (ω ↑m 𝐴) ∧ 𝐺 ∈ (ω ↑m 𝐴))) → (𝐹 ∘f +o 𝐺) = (𝐺 ∘f +o 𝐹)) | ||
| Theorem | naddcnff 43380 | Addition operator for Cantor normal forms is a function into Cantor normal forms. (Contributed by RP, 2-Jan-2025.) | 
| ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ( ∘f +o ↾ (𝑆 × 𝑆)):(𝑆 × 𝑆)⟶𝑆) | ||
| Theorem | naddcnffn 43381 | Addition operator for Cantor normal forms is a function. (Contributed by RP, 2-Jan-2025.) | 
| ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ( ∘f +o ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆)) | ||
| Theorem | naddcnffo 43382 | Addition of Cantor normal forms is a function onto Cantor normal forms. (Contributed by RP, 2-Jan-2025.) | 
| ⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ( ∘f +o ↾ (𝑆 × 𝑆)):(𝑆 × 𝑆)–onto→𝑆) | ||
| Theorem | naddcnfcl 43383 | Closure law for component-wise ordinal addition of Cantor normal forms. (Contributed by RP, 2-Jan-2025.) | 
| ⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) → (𝐹 ∘f +o 𝐺) ∈ 𝑆) | ||
| Theorem | naddcnfcom 43384 | Component-wise ordinal addition of Cantor normal forms commutes. (Contributed by RP, 2-Jan-2025.) | 
| ⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆)) → (𝐹 ∘f +o 𝐺) = (𝐺 ∘f +o 𝐹)) | ||
| Theorem | naddcnfid1 43385 | Identity law for component-wise ordinal addition of Cantor normal forms. (Contributed by RP, 3-Jan-2025.) | 
| ⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹 ∈ 𝑆) → (𝐹 ∘f +o (𝑋 × {∅})) = 𝐹) | ||
| Theorem | naddcnfid2 43386 | Identity law for component-wise ordinal addition of Cantor normal forms. (Contributed by RP, 3-Jan-2025.) | 
| ⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ 𝐹 ∈ 𝑆) → ((𝑋 × {∅}) ∘f +o 𝐹) = 𝐹) | ||
| Theorem | naddcnfass 43387 | Component-wise addition of Cantor normal forms is associative. (Contributed by RP, 3-Jan-2025.) | 
| ⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) → ((𝐹 ∘f +o 𝐺) ∘f +o 𝐻) = (𝐹 ∘f +o (𝐺 ∘f +o 𝐻))) | ||
| Theorem | onsucunifi 43388* | The successor to the union of any non-empty, finite subset of ordinals is the union of the successors of the elements. (Contributed by RP, 12-Feb-2025.) | 
| ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → suc ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 suc 𝑥) | ||
| Theorem | sucunisn 43389 | The successor to the union of any singleton of a set is the successor of the set. (Contributed by RP, 11-Feb-2025.) | 
| ⊢ (𝐴 ∈ 𝑉 → suc ∪ {𝐴} = suc 𝐴) | ||
| Theorem | onsucunipr 43390 | The successor to the union of any pair of ordinals is the union of the successors of the elements. (Contributed by RP, 12-Feb-2025.) | 
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → suc ∪ {𝐴, 𝐵} = ∪ {suc 𝐴, suc 𝐵}) | ||
| Theorem | onsucunitp 43391 | The successor to the union of any triple of ordinals is the union of the successors of the elements. (Contributed by RP, 12-Feb-2025.) | 
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → suc ∪ {𝐴, 𝐵, 𝐶} = ∪ {suc 𝐴, suc 𝐵, suc 𝐶}) | ||
| Theorem | oaun3lem1 43392* | The class of all ordinal sums of elements from two ordinals is ordinal. Lemma for oaun3 43400. (Contributed by RP, 13-Feb-2025.) | 
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord {𝑥 ∣ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑥 = (𝑎 +o 𝑏)}) | ||
| Theorem | oaun3lem2 43393* | The class of all ordinal sums of elements from two ordinals is bounded by the sum. Lemma for oaun3 43400. (Contributed by RP, 13-Feb-2025.) | 
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝑥 ∣ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑥 = (𝑎 +o 𝑏)} ⊆ (𝐴 +o 𝐵)) | ||
| Theorem | oaun3lem3 43394* | The class of all ordinal sums of elements from two ordinals is an ordinal. Lemma for oaun3 43400. (Contributed by RP, 13-Feb-2025.) | 
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝑥 ∣ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑥 = (𝑎 +o 𝑏)} ∈ On) | ||
| Theorem | oaun3lem4 43395* | The class of all ordinal sums of elements from two ordinals is less than the successor to the sum. Lemma for oaun3 43400. (Contributed by RP, 12-Feb-2025.) | 
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝑥 ∣ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑥 = (𝑎 +o 𝑏)} ∈ suc (𝐴 +o 𝐵)) | ||
| Theorem | rp-abid 43396* | Two ways to express a class. (Contributed by RP, 13-Feb-2025.) | 
| ⊢ 𝐴 = {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = 𝑎} | ||
| Theorem | oadif1lem 43397* | Express the set difference of a continuous sum and its left addend as a class of sums. (Contributed by RP, 13-Feb-2025.) | 
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊕ 𝐵) ∈ On) & ⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ On) → (𝐴 ⊕ 𝑏) ∈ On) & ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝑦 ∧ 𝑦 ∈ (𝐴 ⊕ 𝐵))) → ∃𝑏 ∈ 𝐵 (𝐴 ⊕ 𝑏) = 𝑦) & ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑏 ∈ 𝐵 → (𝐴 ⊕ 𝑏) ∈ (𝐴 ⊕ 𝐵))) & ⊢ ((𝐴 ∈ On ∧ 𝑏 ∈ On) → 𝐴 ⊆ (𝐴 ⊕ 𝑏)) ⇒ ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ⊕ 𝐵) ∖ 𝐴) = {𝑥 ∣ ∃𝑏 ∈ 𝐵 𝑥 = (𝐴 ⊕ 𝑏)}) | ||
| Theorem | oadif1 43398* | Express the set difference of an ordinal sum and its left addend as a class of sums. (Contributed by RP, 13-Feb-2025.) | 
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∖ 𝐴) = {𝑥 ∣ ∃𝑏 ∈ 𝐵 𝑥 = (𝐴 +o 𝑏)}) | ||
| Theorem | oaun2 43399* | Ordinal addition as a union of classes. (Contributed by RP, 13-Feb-2025.) | 
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = ∪ {{𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = 𝑎}, {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = (𝐴 +o 𝑏)}}) | ||
| Theorem | oaun3 43400* | Ordinal addition as a union of classes. (Contributed by RP, 13-Feb-2025.) | 
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = ∪ {{𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = 𝑎}, {𝑦 ∣ ∃𝑏 ∈ 𝐵 𝑦 = (𝐴 +o 𝑏)}, {𝑧 ∣ ∃𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑧 = (𝑎 +o 𝑏)}}) | ||
| < Previous Next > | 
| Copyright terms: Public domain | < Previous Next > |