| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege66b | Structured version Visualization version GIF version | ||
| Description: Swap antecedents of frege65b 43928. Proposition 66 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| frege66b | ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥(𝜒 → 𝜑) → ([𝑦 / 𝑥]𝜒 → [𝑦 / 𝑥]𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege65b 43928 | . 2 ⊢ (∀𝑥(𝜒 → 𝜑) → (∀𝑥(𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜒 → [𝑦 / 𝑥]𝜓))) | |
| 2 | ax-frege8 43827 | . 2 ⊢ ((∀𝑥(𝜒 → 𝜑) → (∀𝑥(𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜒 → [𝑦 / 𝑥]𝜓))) → (∀𝑥(𝜑 → 𝜓) → (∀𝑥(𝜒 → 𝜑) → ([𝑦 / 𝑥]𝜒 → [𝑦 / 𝑥]𝜓)))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥(𝜒 → 𝜑) → ([𝑦 / 𝑥]𝜒 → [𝑦 / 𝑥]𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1537 [wsb 2063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-12 2176 ax-frege1 43808 ax-frege2 43809 ax-frege8 43827 ax-frege58b 43919 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-nf 1783 df-sb 2064 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |