| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ax-frege2 | Structured version Visualization version GIF version | ||
| Description: If a proposition 𝜒 is a necessary consequence of two propositions 𝜓 and 𝜑 and one of those, 𝜓, is in turn a necessary consequence of the other, 𝜑, then the proposition 𝜒 is a necessary consequence of the latter one, 𝜑, alone. Axiom 2 of [Frege1879] p. 26. Identical to ax-2 7. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax-frege2 | ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . 2 wff 𝜑 | |
| 2 | wps | . . 3 wff 𝜓 | |
| 3 | wch | . . 3 wff 𝜒 | |
| 4 | 2, 3 | wi 4 | . 2 wff (𝜓 → 𝜒) |
| 5 | 1, 3 | wi 4 | . . 3 wff (𝜑 → 𝜒) |
| 6 | 1, 2, 5 | bj-0 36543 | . 2 wff ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
| 7 | 1, 4, 6 | bj-0 36543 | 1 wff ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) |
| Colors of variables: wff setvar class |
| This axiom is referenced by: rp-frege3g 43807 frege3 43808 rp-misc1-frege 43809 rp-frege24 43810 rp-frege4g 43811 frege4 43812 rp-7frege 43814 rp-8frege 43817 frege39 43855 frege73 43949 frege79 43955 |
| Copyright terms: Public domain | W3C validator |