Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ax-frege2 | Structured version Visualization version GIF version |
Description: If a proposition 𝜒 is a necessary consequence of two propositions 𝜓 and 𝜑 and one of those, 𝜓, is in turn a necessary consequence of the other, 𝜑, then the proposition 𝜒 is a necessary consequence of the latter one, 𝜑, alone. Axiom 2 of [Frege1879] p. 26. Identical to ax-2 7. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax-frege2 | ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . 2 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | wch | . . 3 wff 𝜒 | |
4 | 2, 3 | wi 4 | . 2 wff (𝜓 → 𝜒) |
5 | 1, 3 | wi 4 | . . 3 wff (𝜑 → 𝜒) |
6 | 1, 2, 5 | bj-0 34649 | . 2 wff ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
7 | 1, 4, 6 | bj-0 34649 | 1 wff ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) |
Colors of variables: wff setvar class |
This axiom is referenced by: rp-frege3g 41291 frege3 41292 rp-misc1-frege 41293 rp-frege24 41294 rp-frege4g 41295 frege4 41296 rp-7frege 41298 rp-8frege 41301 frege39 41339 frege73 41433 frege79 41439 |
Copyright terms: Public domain | W3C validator |