MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  jc Structured version   Visualization version   GIF version

Theorem jc 161
Description: Deduction joining the consequents of two premises. A deduction associated with pm3.2im 160. (Contributed by NM, 28-Dec-1992.)
Hypotheses
Ref Expression
jc.1 (𝜑𝜓)
jc.2 (𝜑𝜒)
Assertion
Ref Expression
jc (𝜑 → ¬ (𝜓 → ¬ 𝜒))

Proof of Theorem jc
StepHypRef Expression
1 jc.1 . 2 (𝜑𝜓)
2 jc.2 . 2 (𝜑𝜒)
3 pm3.2im 160 . 2 (𝜓 → (𝜒 → ¬ (𝜓 → ¬ 𝜒)))
41, 2, 3sylc 65 1 (𝜑 → ¬ (𝜓 → ¬ 𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  jcndOLD  336  isprm5  16340
  Copyright terms: Public domain W3C validator