Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  jcn Structured version   Visualization version   GIF version

Theorem jcn 329
 Description: Inference joining the consequents of two premises. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
jcn.1 (𝜑𝜓)
jcn.2 (𝜑 → ¬ 𝜒)
Assertion
Ref Expression
jcn (𝜑 → ¬ (𝜓𝜒))

Proof of Theorem jcn
StepHypRef Expression
1 jcn.1 . . 3 (𝜑𝜓)
2 jcn.2 . . 3 (𝜑 → ¬ 𝜒)
31, 2jc 161 . 2 (𝜑 → ¬ (𝜓 → ¬ ¬ 𝜒))
4 notnotb 307 . . 3 (𝜒 ↔ ¬ ¬ 𝜒)
54imbi2i 328 . 2 ((𝜓𝜒) ↔ (𝜓 → ¬ ¬ 𝜒))
63, 5sylnibr 321 1 (𝜑 → ¬ (𝜓𝜒))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 199 This theorem is referenced by:  isf34lem4  9597  strlem6  29814  hstrlem6  29822  nn0prpw  33198  unblimceq0  33372  relexpmulg  39424  limcrecl  41347  ichnreuop  43008
 Copyright terms: Public domain W3C validator