MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isprm5 Structured version   Visualization version   GIF version

Theorem isprm5 16039
Description: One need only check prime divisors of 𝑃 up to 𝑃 in order to ensure primality. (Contributed by Mario Carneiro, 18-Feb-2014.)
Assertion
Ref Expression
isprm5 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)))
Distinct variable group:   𝑧,𝑃

Proof of Theorem isprm5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isprm4 16016 . 2 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ (ℤ‘2)(𝑧𝑃𝑧 = 𝑃)))
2 prmuz2 16028 . . . . . . . 8 (𝑧 ∈ ℙ → 𝑧 ∈ (ℤ‘2))
32a1i 11 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → (𝑧 ∈ ℙ → 𝑧 ∈ (ℤ‘2)))
4 eluz2gt1 12308 . . . . . . . . . . . 12 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
5 eluzelre 12242 . . . . . . . . . . . . 13 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℝ)
6 eluz2nn 12272 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ)
76nngt0d 11674 . . . . . . . . . . . . 13 (𝑃 ∈ (ℤ‘2) → 0 < 𝑃)
8 ltmulgt11 11488 . . . . . . . . . . . . 13 ((𝑃 ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ 0 < 𝑃) → (1 < 𝑃𝑃 < (𝑃 · 𝑃)))
95, 5, 7, 8syl3anc 1363 . . . . . . . . . . . 12 (𝑃 ∈ (ℤ‘2) → (1 < 𝑃𝑃 < (𝑃 · 𝑃)))
104, 9mpbid 233 . . . . . . . . . . 11 (𝑃 ∈ (ℤ‘2) → 𝑃 < (𝑃 · 𝑃))
115, 5remulcld 10659 . . . . . . . . . . . 12 (𝑃 ∈ (ℤ‘2) → (𝑃 · 𝑃) ∈ ℝ)
125, 11ltnled 10775 . . . . . . . . . . 11 (𝑃 ∈ (ℤ‘2) → (𝑃 < (𝑃 · 𝑃) ↔ ¬ (𝑃 · 𝑃) ≤ 𝑃))
1310, 12mpbid 233 . . . . . . . . . 10 (𝑃 ∈ (ℤ‘2) → ¬ (𝑃 · 𝑃) ≤ 𝑃)
14 oveq12 7154 . . . . . . . . . . . . 13 ((𝑧 = 𝑃𝑧 = 𝑃) → (𝑧 · 𝑧) = (𝑃 · 𝑃))
1514anidms 567 . . . . . . . . . . . 12 (𝑧 = 𝑃 → (𝑧 · 𝑧) = (𝑃 · 𝑃))
1615breq1d 5067 . . . . . . . . . . 11 (𝑧 = 𝑃 → ((𝑧 · 𝑧) ≤ 𝑃 ↔ (𝑃 · 𝑃) ≤ 𝑃))
1716notbid 319 . . . . . . . . . 10 (𝑧 = 𝑃 → (¬ (𝑧 · 𝑧) ≤ 𝑃 ↔ ¬ (𝑃 · 𝑃) ≤ 𝑃))
1813, 17syl5ibrcom 248 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) → (𝑧 = 𝑃 → ¬ (𝑧 · 𝑧) ≤ 𝑃))
1918imim2d 57 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → ((𝑧𝑃𝑧 = 𝑃) → (𝑧𝑃 → ¬ (𝑧 · 𝑧) ≤ 𝑃)))
20 con2 137 . . . . . . . 8 ((𝑧𝑃 → ¬ (𝑧 · 𝑧) ≤ 𝑃) → ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃))
2119, 20syl6 35 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → ((𝑧𝑃𝑧 = 𝑃) → ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃)))
223, 21imim12d 81 . . . . . 6 (𝑃 ∈ (ℤ‘2) → ((𝑧 ∈ (ℤ‘2) → (𝑧𝑃𝑧 = 𝑃)) → (𝑧 ∈ ℙ → ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃))))
2322ralimdv2 3173 . . . . 5 (𝑃 ∈ (ℤ‘2) → (∀𝑧 ∈ (ℤ‘2)(𝑧𝑃𝑧 = 𝑃) → ∀𝑧 ∈ ℙ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃)))
24 annim 404 . . . . . . . . 9 ((𝑧𝑃 ∧ ¬ 𝑧 = 𝑃) ↔ ¬ (𝑧𝑃𝑧 = 𝑃))
25 oveq12 7154 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑧𝑥 = 𝑧) → (𝑥 · 𝑥) = (𝑧 · 𝑧))
2625anidms 567 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (𝑥 · 𝑥) = (𝑧 · 𝑧))
2726breq1d 5067 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → ((𝑥 · 𝑥) ≤ 𝑃 ↔ (𝑧 · 𝑧) ≤ 𝑃))
28 breq1 5060 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝑥𝑃𝑧𝑃))
2927, 28anbi12d 630 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃) ↔ ((𝑧 · 𝑧) ≤ 𝑃𝑧𝑃)))
3029rspcev 3620 . . . . . . . . . . . . . 14 ((𝑧 ∈ (ℤ‘2) ∧ ((𝑧 · 𝑧) ≤ 𝑃𝑧𝑃)) → ∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃))
3130ancom2s 646 . . . . . . . . . . . . 13 ((𝑧 ∈ (ℤ‘2) ∧ (𝑧𝑃 ∧ (𝑧 · 𝑧) ≤ 𝑃)) → ∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃))
3231expr 457 . . . . . . . . . . . 12 ((𝑧 ∈ (ℤ‘2) ∧ 𝑧𝑃) → ((𝑧 · 𝑧) ≤ 𝑃 → ∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)))
3332ad2ant2lr 744 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → ((𝑧 · 𝑧) ≤ 𝑃 → ∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)))
34 simprl 767 . . . . . . . . . . . . . 14 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑧𝑃)
35 eluzelz 12241 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℤ)
3635ad2antlr 723 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑧 ∈ ℤ)
37 eluz2nn 12272 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℕ)
3837ad2antlr 723 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑧 ∈ ℕ)
3938nnne0d 11675 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑧 ≠ 0)
40 eluzelz 12241 . . . . . . . . . . . . . . . 16 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℤ)
4140ad2antrr 722 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑃 ∈ ℤ)
42 dvdsval2 15598 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℤ ∧ 𝑧 ≠ 0 ∧ 𝑃 ∈ ℤ) → (𝑧𝑃 ↔ (𝑃 / 𝑧) ∈ ℤ))
4336, 39, 41, 42syl3anc 1363 . . . . . . . . . . . . . 14 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑧𝑃 ↔ (𝑃 / 𝑧) ∈ ℤ))
4434, 43mpbid 233 . . . . . . . . . . . . 13 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑃 / 𝑧) ∈ ℤ)
45 eluzelre 12242 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℝ)
4645ad2antlr 723 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑧 ∈ ℝ)
4746recnd 10657 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑧 ∈ ℂ)
4847mulid2d 10647 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (1 · 𝑧) = 𝑧)
495ad2antrr 722 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑃 ∈ ℝ)
506ad2antrr 722 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑃 ∈ ℕ)
51 dvdsle 15648 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑧𝑃𝑧𝑃))
5251imp 407 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℕ) ∧ 𝑧𝑃) → 𝑧𝑃)
5336, 50, 34, 52syl21anc 833 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑧𝑃)
54 simprr 769 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → ¬ 𝑧 = 𝑃)
5554neqned 3020 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑧𝑃)
5655necomd 3068 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑃𝑧)
5746, 49, 53, 56leneltd 10782 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑧 < 𝑃)
5848, 57eqbrtrd 5079 . . . . . . . . . . . . . 14 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (1 · 𝑧) < 𝑃)
59 1red 10630 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 1 ∈ ℝ)
6041zred 12075 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑃 ∈ ℝ)
61 nnre 11633 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℕ → 𝑧 ∈ ℝ)
62 nngt0 11656 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℕ → 0 < 𝑧)
6361, 62jca 512 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ℕ → (𝑧 ∈ ℝ ∧ 0 < 𝑧))
6438, 63syl 17 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑧 ∈ ℝ ∧ 0 < 𝑧))
65 ltmuldiv 11501 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ (𝑧 ∈ ℝ ∧ 0 < 𝑧)) → ((1 · 𝑧) < 𝑃 ↔ 1 < (𝑃 / 𝑧)))
6659, 60, 64, 65syl3anc 1363 . . . . . . . . . . . . . 14 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → ((1 · 𝑧) < 𝑃 ↔ 1 < (𝑃 / 𝑧)))
6758, 66mpbid 233 . . . . . . . . . . . . 13 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 1 < (𝑃 / 𝑧))
68 eluz2b1 12307 . . . . . . . . . . . . 13 ((𝑃 / 𝑧) ∈ (ℤ‘2) ↔ ((𝑃 / 𝑧) ∈ ℤ ∧ 1 < (𝑃 / 𝑧)))
6944, 67, 68sylanbrc 583 . . . . . . . . . . . 12 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑃 / 𝑧) ∈ (ℤ‘2))
7046, 46remulcld 10659 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑧 · 𝑧) ∈ ℝ)
7138, 38nnmulcld 11678 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑧 · 𝑧) ∈ ℕ)
72 nnrp 12388 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ+)
73 nnrp 12388 . . . . . . . . . . . . . . . . . 18 ((𝑧 · 𝑧) ∈ ℕ → (𝑧 · 𝑧) ∈ ℝ+)
74 rpdivcl 12402 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℝ+ ∧ (𝑧 · 𝑧) ∈ ℝ+) → (𝑃 / (𝑧 · 𝑧)) ∈ ℝ+)
7572, 73, 74syl2an 595 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℕ ∧ (𝑧 · 𝑧) ∈ ℕ) → (𝑃 / (𝑧 · 𝑧)) ∈ ℝ+)
7650, 71, 75syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑃 / (𝑧 · 𝑧)) ∈ ℝ+)
7749, 70, 76lemul1d 12462 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑃 ≤ (𝑧 · 𝑧) ↔ (𝑃 · (𝑃 / (𝑧 · 𝑧))) ≤ ((𝑧 · 𝑧) · (𝑃 / (𝑧 · 𝑧)))))
7849recnd 10657 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑃 ∈ ℂ)
7978, 47, 78, 47, 39, 39divmuldivd 11445 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → ((𝑃 / 𝑧) · (𝑃 / 𝑧)) = ((𝑃 · 𝑃) / (𝑧 · 𝑧)))
8071nncnd 11642 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑧 · 𝑧) ∈ ℂ)
8171nnne0d 11675 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑧 · 𝑧) ≠ 0)
8278, 78, 80, 81divassd 11439 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → ((𝑃 · 𝑃) / (𝑧 · 𝑧)) = (𝑃 · (𝑃 / (𝑧 · 𝑧))))
8379, 82eqtrd 2853 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → ((𝑃 / 𝑧) · (𝑃 / 𝑧)) = (𝑃 · (𝑃 / (𝑧 · 𝑧))))
8478, 80, 81divcan2d 11406 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → ((𝑧 · 𝑧) · (𝑃 / (𝑧 · 𝑧))) = 𝑃)
8584eqcomd 2824 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑃 = ((𝑧 · 𝑧) · (𝑃 / (𝑧 · 𝑧))))
8683, 85breq12d 5070 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (((𝑃 / 𝑧) · (𝑃 / 𝑧)) ≤ 𝑃 ↔ (𝑃 · (𝑃 / (𝑧 · 𝑧))) ≤ ((𝑧 · 𝑧) · (𝑃 / (𝑧 · 𝑧)))))
8777, 86bitr4d 283 . . . . . . . . . . . . . 14 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑃 ≤ (𝑧 · 𝑧) ↔ ((𝑃 / 𝑧) · (𝑃 / 𝑧)) ≤ 𝑃))
8887biimpd 230 . . . . . . . . . . . . 13 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑃 ≤ (𝑧 · 𝑧) → ((𝑃 / 𝑧) · (𝑃 / 𝑧)) ≤ 𝑃))
8978, 47, 39divcan2d 11406 . . . . . . . . . . . . . 14 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑧 · (𝑃 / 𝑧)) = 𝑃)
90 dvds0lem 15608 . . . . . . . . . . . . . 14 (((𝑧 ∈ ℤ ∧ (𝑃 / 𝑧) ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ (𝑧 · (𝑃 / 𝑧)) = 𝑃) → (𝑃 / 𝑧) ∥ 𝑃)
9136, 44, 41, 89, 90syl31anc 1365 . . . . . . . . . . . . 13 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑃 / 𝑧) ∥ 𝑃)
9288, 91jctird 527 . . . . . . . . . . . 12 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑃 ≤ (𝑧 · 𝑧) → (((𝑃 / 𝑧) · (𝑃 / 𝑧)) ≤ 𝑃 ∧ (𝑃 / 𝑧) ∥ 𝑃)))
93 oveq12 7154 . . . . . . . . . . . . . . . 16 ((𝑥 = (𝑃 / 𝑧) ∧ 𝑥 = (𝑃 / 𝑧)) → (𝑥 · 𝑥) = ((𝑃 / 𝑧) · (𝑃 / 𝑧)))
9493anidms 567 . . . . . . . . . . . . . . 15 (𝑥 = (𝑃 / 𝑧) → (𝑥 · 𝑥) = ((𝑃 / 𝑧) · (𝑃 / 𝑧)))
9594breq1d 5067 . . . . . . . . . . . . . 14 (𝑥 = (𝑃 / 𝑧) → ((𝑥 · 𝑥) ≤ 𝑃 ↔ ((𝑃 / 𝑧) · (𝑃 / 𝑧)) ≤ 𝑃))
96 breq1 5060 . . . . . . . . . . . . . 14 (𝑥 = (𝑃 / 𝑧) → (𝑥𝑃 ↔ (𝑃 / 𝑧) ∥ 𝑃))
9795, 96anbi12d 630 . . . . . . . . . . . . 13 (𝑥 = (𝑃 / 𝑧) → (((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃) ↔ (((𝑃 / 𝑧) · (𝑃 / 𝑧)) ≤ 𝑃 ∧ (𝑃 / 𝑧) ∥ 𝑃)))
9897rspcev 3620 . . . . . . . . . . . 12 (((𝑃 / 𝑧) ∈ (ℤ‘2) ∧ (((𝑃 / 𝑧) · (𝑃 / 𝑧)) ≤ 𝑃 ∧ (𝑃 / 𝑧) ∥ 𝑃)) → ∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃))
9969, 92, 98syl6an 680 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑃 ≤ (𝑧 · 𝑧) → ∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)))
10070, 49letrid 10780 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → ((𝑧 · 𝑧) ≤ 𝑃𝑃 ≤ (𝑧 · 𝑧)))
10133, 99, 100mpjaod 854 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → ∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃))
102101ex 413 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((𝑧𝑃 ∧ ¬ 𝑧 = 𝑃) → ∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)))
10324, 102syl5bir 244 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (¬ (𝑧𝑃𝑧 = 𝑃) → ∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)))
104103rexlimdva 3281 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → (∃𝑧 ∈ (ℤ‘2) ¬ (𝑧𝑃𝑧 = 𝑃) → ∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)))
105 prmz 16007 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℙ → 𝑧 ∈ ℤ)
106105ad2antrl 724 . . . . . . . . . . . . . 14 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑧 ∈ ℤ)
107106zred 12075 . . . . . . . . . . . . 13 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑧 ∈ ℝ)
108107, 107remulcld 10659 . . . . . . . . . . . 12 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → (𝑧 · 𝑧) ∈ ℝ)
109 eluzelz 12241 . . . . . . . . . . . . . . 15 (𝑥 ∈ (ℤ‘2) → 𝑥 ∈ ℤ)
110109ad3antlr 727 . . . . . . . . . . . . . 14 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑥 ∈ ℤ)
111110zred 12075 . . . . . . . . . . . . 13 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑥 ∈ ℝ)
112111, 111remulcld 10659 . . . . . . . . . . . 12 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → (𝑥 · 𝑥) ∈ ℝ)
11340ad3antrrr 726 . . . . . . . . . . . . 13 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑃 ∈ ℤ)
114113zred 12075 . . . . . . . . . . . 12 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑃 ∈ ℝ)
115 eluz2nn 12272 . . . . . . . . . . . . . . 15 (𝑥 ∈ (ℤ‘2) → 𝑥 ∈ ℕ)
116115ad3antlr 727 . . . . . . . . . . . . . 14 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑥 ∈ ℕ)
117 simprr 769 . . . . . . . . . . . . . 14 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑧𝑥)
118 dvdsle 15648 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℕ) → (𝑧𝑥𝑧𝑥))
119118imp 407 . . . . . . . . . . . . . 14 (((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℕ) ∧ 𝑧𝑥) → 𝑧𝑥)
120106, 116, 117, 119syl21anc 833 . . . . . . . . . . . . 13 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑧𝑥)
121 eluzge2nn0 12275 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℕ0)
122121nn0ge0d 11946 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (ℤ‘2) → 0 ≤ 𝑧)
1232, 122syl 17 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℙ → 0 ≤ 𝑧)
124123ad2antrl 724 . . . . . . . . . . . . . 14 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 0 ≤ 𝑧)
125 nnnn0 11892 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0)
126125nn0ge0d 11946 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℕ → 0 ≤ 𝑥)
127116, 126syl 17 . . . . . . . . . . . . . 14 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 0 ≤ 𝑥)
128 le2msq 11528 . . . . . . . . . . . . . 14 (((𝑧 ∈ ℝ ∧ 0 ≤ 𝑧) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (𝑧𝑥 ↔ (𝑧 · 𝑧) ≤ (𝑥 · 𝑥)))
129107, 124, 111, 127, 128syl22anc 834 . . . . . . . . . . . . 13 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → (𝑧𝑥 ↔ (𝑧 · 𝑧) ≤ (𝑥 · 𝑥)))
130120, 129mpbid 233 . . . . . . . . . . . 12 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → (𝑧 · 𝑧) ≤ (𝑥 · 𝑥))
131 simplrl 773 . . . . . . . . . . . 12 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → (𝑥 · 𝑥) ≤ 𝑃)
132108, 112, 114, 130, 131letrd 10785 . . . . . . . . . . 11 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → (𝑧 · 𝑧) ≤ 𝑃)
133 simplrr 774 . . . . . . . . . . . 12 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑥𝑃)
134 dvdstr 15634 . . . . . . . . . . . . 13 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑧𝑥𝑥𝑃) → 𝑧𝑃))
135106, 110, 113, 134syl3anc 1363 . . . . . . . . . . . 12 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → ((𝑧𝑥𝑥𝑃) → 𝑧𝑃))
136117, 133, 135mp2and 695 . . . . . . . . . . 11 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑧𝑃)
137132, 136jc 164 . . . . . . . . . 10 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → ¬ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃))
138 exprmfct 16036 . . . . . . . . . . 11 (𝑥 ∈ (ℤ‘2) → ∃𝑧 ∈ ℙ 𝑧𝑥)
139138ad2antlr 723 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) → ∃𝑧 ∈ ℙ 𝑧𝑥)
140137, 139reximddv 3272 . . . . . . . . 9 (((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) → ∃𝑧 ∈ ℙ ¬ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃))
141140ex 413 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) → (((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃) → ∃𝑧 ∈ ℙ ¬ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃)))
142141rexlimdva 3281 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → (∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃) → ∃𝑧 ∈ ℙ ¬ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃)))
143104, 142syld 47 . . . . . 6 (𝑃 ∈ (ℤ‘2) → (∃𝑧 ∈ (ℤ‘2) ¬ (𝑧𝑃𝑧 = 𝑃) → ∃𝑧 ∈ ℙ ¬ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃)))
144 rexnal 3235 . . . . . 6 (∃𝑧 ∈ (ℤ‘2) ¬ (𝑧𝑃𝑧 = 𝑃) ↔ ¬ ∀𝑧 ∈ (ℤ‘2)(𝑧𝑃𝑧 = 𝑃))
145 rexnal 3235 . . . . . 6 (∃𝑧 ∈ ℙ ¬ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃) ↔ ¬ ∀𝑧 ∈ ℙ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃))
146143, 144, 1453imtr3g 296 . . . . 5 (𝑃 ∈ (ℤ‘2) → (¬ ∀𝑧 ∈ (ℤ‘2)(𝑧𝑃𝑧 = 𝑃) → ¬ ∀𝑧 ∈ ℙ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃)))
14723, 146impcon4bid 228 . . . 4 (𝑃 ∈ (ℤ‘2) → (∀𝑧 ∈ (ℤ‘2)(𝑧𝑃𝑧 = 𝑃) ↔ ∀𝑧 ∈ ℙ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃)))
148 prmnn 16006 . . . . . . . . 9 (𝑧 ∈ ℙ → 𝑧 ∈ ℕ)
149148nncnd 11642 . . . . . . . 8 (𝑧 ∈ ℙ → 𝑧 ∈ ℂ)
150149sqvald 13495 . . . . . . 7 (𝑧 ∈ ℙ → (𝑧↑2) = (𝑧 · 𝑧))
151150breq1d 5067 . . . . . 6 (𝑧 ∈ ℙ → ((𝑧↑2) ≤ 𝑃 ↔ (𝑧 · 𝑧) ≤ 𝑃))
152151imbi1d 343 . . . . 5 (𝑧 ∈ ℙ → (((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃) ↔ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃)))
153152ralbiia 3161 . . . 4 (∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃) ↔ ∀𝑧 ∈ ℙ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃))
154147, 153syl6bbr 290 . . 3 (𝑃 ∈ (ℤ‘2) → (∀𝑧 ∈ (ℤ‘2)(𝑧𝑃𝑧 = 𝑃) ↔ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)))
155154pm5.32i 575 . 2 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ (ℤ‘2)(𝑧𝑃𝑧 = 𝑃)) ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)))
1561, 155bitri 276 1 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wne 3013  wral 3135  wrex 3136   class class class wbr 5057  cfv 6348  (class class class)co 7145  cr 10524  0cc0 10525  1c1 10526   · cmul 10530   < clt 10663  cle 10664   / cdiv 11285  cn 11626  2c2 11680  cz 11969  cuz 12231  +crp 12377  cexp 13417  cdvds 15595  cprime 16003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12881  df-seq 13358  df-exp 13418  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-dvds 15596  df-prm 16004
This theorem is referenced by:  isprm7  16040  pockthg  16230  prmlem1a  16428
  Copyright terms: Public domain W3C validator