MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isprm5 Structured version   Visualization version   GIF version

Theorem isprm5 16264
Description: One need only check prime divisors of 𝑃 up to 𝑃 in order to ensure primality. (Contributed by Mario Carneiro, 18-Feb-2014.)
Assertion
Ref Expression
isprm5 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)))
Distinct variable group:   𝑧,𝑃

Proof of Theorem isprm5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isprm4 16241 . 2 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ (ℤ‘2)(𝑧𝑃𝑧 = 𝑃)))
2 prmuz2 16253 . . . . . . . 8 (𝑧 ∈ ℙ → 𝑧 ∈ (ℤ‘2))
32a1i 11 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → (𝑧 ∈ ℙ → 𝑧 ∈ (ℤ‘2)))
4 eluz2gt1 12516 . . . . . . . . . . . 12 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
5 eluzelre 12449 . . . . . . . . . . . . 13 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℝ)
6 eluz2nn 12480 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ)
76nngt0d 11879 . . . . . . . . . . . . 13 (𝑃 ∈ (ℤ‘2) → 0 < 𝑃)
8 ltmulgt11 11692 . . . . . . . . . . . . 13 ((𝑃 ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ 0 < 𝑃) → (1 < 𝑃𝑃 < (𝑃 · 𝑃)))
95, 5, 7, 8syl3anc 1373 . . . . . . . . . . . 12 (𝑃 ∈ (ℤ‘2) → (1 < 𝑃𝑃 < (𝑃 · 𝑃)))
104, 9mpbid 235 . . . . . . . . . . 11 (𝑃 ∈ (ℤ‘2) → 𝑃 < (𝑃 · 𝑃))
115, 5remulcld 10863 . . . . . . . . . . . 12 (𝑃 ∈ (ℤ‘2) → (𝑃 · 𝑃) ∈ ℝ)
125, 11ltnled 10979 . . . . . . . . . . 11 (𝑃 ∈ (ℤ‘2) → (𝑃 < (𝑃 · 𝑃) ↔ ¬ (𝑃 · 𝑃) ≤ 𝑃))
1310, 12mpbid 235 . . . . . . . . . 10 (𝑃 ∈ (ℤ‘2) → ¬ (𝑃 · 𝑃) ≤ 𝑃)
14 oveq12 7222 . . . . . . . . . . . . 13 ((𝑧 = 𝑃𝑧 = 𝑃) → (𝑧 · 𝑧) = (𝑃 · 𝑃))
1514anidms 570 . . . . . . . . . . . 12 (𝑧 = 𝑃 → (𝑧 · 𝑧) = (𝑃 · 𝑃))
1615breq1d 5063 . . . . . . . . . . 11 (𝑧 = 𝑃 → ((𝑧 · 𝑧) ≤ 𝑃 ↔ (𝑃 · 𝑃) ≤ 𝑃))
1716notbid 321 . . . . . . . . . 10 (𝑧 = 𝑃 → (¬ (𝑧 · 𝑧) ≤ 𝑃 ↔ ¬ (𝑃 · 𝑃) ≤ 𝑃))
1813, 17syl5ibrcom 250 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) → (𝑧 = 𝑃 → ¬ (𝑧 · 𝑧) ≤ 𝑃))
1918imim2d 57 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → ((𝑧𝑃𝑧 = 𝑃) → (𝑧𝑃 → ¬ (𝑧 · 𝑧) ≤ 𝑃)))
20 con2 137 . . . . . . . 8 ((𝑧𝑃 → ¬ (𝑧 · 𝑧) ≤ 𝑃) → ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃))
2119, 20syl6 35 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → ((𝑧𝑃𝑧 = 𝑃) → ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃)))
223, 21imim12d 81 . . . . . 6 (𝑃 ∈ (ℤ‘2) → ((𝑧 ∈ (ℤ‘2) → (𝑧𝑃𝑧 = 𝑃)) → (𝑧 ∈ ℙ → ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃))))
2322ralimdv2 3099 . . . . 5 (𝑃 ∈ (ℤ‘2) → (∀𝑧 ∈ (ℤ‘2)(𝑧𝑃𝑧 = 𝑃) → ∀𝑧 ∈ ℙ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃)))
24 annim 407 . . . . . . . . 9 ((𝑧𝑃 ∧ ¬ 𝑧 = 𝑃) ↔ ¬ (𝑧𝑃𝑧 = 𝑃))
25 oveq12 7222 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑧𝑥 = 𝑧) → (𝑥 · 𝑥) = (𝑧 · 𝑧))
2625anidms 570 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (𝑥 · 𝑥) = (𝑧 · 𝑧))
2726breq1d 5063 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → ((𝑥 · 𝑥) ≤ 𝑃 ↔ (𝑧 · 𝑧) ≤ 𝑃))
28 breq1 5056 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝑥𝑃𝑧𝑃))
2927, 28anbi12d 634 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃) ↔ ((𝑧 · 𝑧) ≤ 𝑃𝑧𝑃)))
3029rspcev 3537 . . . . . . . . . . . . . 14 ((𝑧 ∈ (ℤ‘2) ∧ ((𝑧 · 𝑧) ≤ 𝑃𝑧𝑃)) → ∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃))
3130ancom2s 650 . . . . . . . . . . . . 13 ((𝑧 ∈ (ℤ‘2) ∧ (𝑧𝑃 ∧ (𝑧 · 𝑧) ≤ 𝑃)) → ∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃))
3231expr 460 . . . . . . . . . . . 12 ((𝑧 ∈ (ℤ‘2) ∧ 𝑧𝑃) → ((𝑧 · 𝑧) ≤ 𝑃 → ∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)))
3332ad2ant2lr 748 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → ((𝑧 · 𝑧) ≤ 𝑃 → ∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)))
34 simprl 771 . . . . . . . . . . . . . 14 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑧𝑃)
35 eluzelz 12448 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℤ)
3635ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑧 ∈ ℤ)
37 eluz2nn 12480 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℕ)
3837ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑧 ∈ ℕ)
3938nnne0d 11880 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑧 ≠ 0)
40 eluzelz 12448 . . . . . . . . . . . . . . . 16 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℤ)
4140ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑃 ∈ ℤ)
42 dvdsval2 15818 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℤ ∧ 𝑧 ≠ 0 ∧ 𝑃 ∈ ℤ) → (𝑧𝑃 ↔ (𝑃 / 𝑧) ∈ ℤ))
4336, 39, 41, 42syl3anc 1373 . . . . . . . . . . . . . 14 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑧𝑃 ↔ (𝑃 / 𝑧) ∈ ℤ))
4434, 43mpbid 235 . . . . . . . . . . . . 13 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑃 / 𝑧) ∈ ℤ)
45 eluzelre 12449 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℝ)
4645ad2antlr 727 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑧 ∈ ℝ)
4746recnd 10861 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑧 ∈ ℂ)
4847mulid2d 10851 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (1 · 𝑧) = 𝑧)
495ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑃 ∈ ℝ)
506ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑃 ∈ ℕ)
51 dvdsle 15871 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑧𝑃𝑧𝑃))
5251imp 410 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℕ) ∧ 𝑧𝑃) → 𝑧𝑃)
5336, 50, 34, 52syl21anc 838 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑧𝑃)
54 simprr 773 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → ¬ 𝑧 = 𝑃)
5554neqned 2947 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑧𝑃)
5655necomd 2996 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑃𝑧)
5746, 49, 53, 56leneltd 10986 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑧 < 𝑃)
5848, 57eqbrtrd 5075 . . . . . . . . . . . . . 14 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (1 · 𝑧) < 𝑃)
59 1red 10834 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 1 ∈ ℝ)
6041zred 12282 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑃 ∈ ℝ)
61 nnre 11837 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℕ → 𝑧 ∈ ℝ)
62 nngt0 11861 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℕ → 0 < 𝑧)
6361, 62jca 515 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ℕ → (𝑧 ∈ ℝ ∧ 0 < 𝑧))
6438, 63syl 17 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑧 ∈ ℝ ∧ 0 < 𝑧))
65 ltmuldiv 11705 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ (𝑧 ∈ ℝ ∧ 0 < 𝑧)) → ((1 · 𝑧) < 𝑃 ↔ 1 < (𝑃 / 𝑧)))
6659, 60, 64, 65syl3anc 1373 . . . . . . . . . . . . . 14 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → ((1 · 𝑧) < 𝑃 ↔ 1 < (𝑃 / 𝑧)))
6758, 66mpbid 235 . . . . . . . . . . . . 13 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 1 < (𝑃 / 𝑧))
68 eluz2b1 12515 . . . . . . . . . . . . 13 ((𝑃 / 𝑧) ∈ (ℤ‘2) ↔ ((𝑃 / 𝑧) ∈ ℤ ∧ 1 < (𝑃 / 𝑧)))
6944, 67, 68sylanbrc 586 . . . . . . . . . . . 12 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑃 / 𝑧) ∈ (ℤ‘2))
7046, 46remulcld 10863 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑧 · 𝑧) ∈ ℝ)
7138, 38nnmulcld 11883 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑧 · 𝑧) ∈ ℕ)
72 nnrp 12597 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ+)
73 nnrp 12597 . . . . . . . . . . . . . . . . . 18 ((𝑧 · 𝑧) ∈ ℕ → (𝑧 · 𝑧) ∈ ℝ+)
74 rpdivcl 12611 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℝ+ ∧ (𝑧 · 𝑧) ∈ ℝ+) → (𝑃 / (𝑧 · 𝑧)) ∈ ℝ+)
7572, 73, 74syl2an 599 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℕ ∧ (𝑧 · 𝑧) ∈ ℕ) → (𝑃 / (𝑧 · 𝑧)) ∈ ℝ+)
7650, 71, 75syl2anc 587 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑃 / (𝑧 · 𝑧)) ∈ ℝ+)
7749, 70, 76lemul1d 12671 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑃 ≤ (𝑧 · 𝑧) ↔ (𝑃 · (𝑃 / (𝑧 · 𝑧))) ≤ ((𝑧 · 𝑧) · (𝑃 / (𝑧 · 𝑧)))))
7849recnd 10861 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑃 ∈ ℂ)
7978, 47, 78, 47, 39, 39divmuldivd 11649 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → ((𝑃 / 𝑧) · (𝑃 / 𝑧)) = ((𝑃 · 𝑃) / (𝑧 · 𝑧)))
8071nncnd 11846 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑧 · 𝑧) ∈ ℂ)
8171nnne0d 11880 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑧 · 𝑧) ≠ 0)
8278, 78, 80, 81divassd 11643 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → ((𝑃 · 𝑃) / (𝑧 · 𝑧)) = (𝑃 · (𝑃 / (𝑧 · 𝑧))))
8379, 82eqtrd 2777 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → ((𝑃 / 𝑧) · (𝑃 / 𝑧)) = (𝑃 · (𝑃 / (𝑧 · 𝑧))))
8478, 80, 81divcan2d 11610 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → ((𝑧 · 𝑧) · (𝑃 / (𝑧 · 𝑧))) = 𝑃)
8584eqcomd 2743 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑃 = ((𝑧 · 𝑧) · (𝑃 / (𝑧 · 𝑧))))
8683, 85breq12d 5066 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (((𝑃 / 𝑧) · (𝑃 / 𝑧)) ≤ 𝑃 ↔ (𝑃 · (𝑃 / (𝑧 · 𝑧))) ≤ ((𝑧 · 𝑧) · (𝑃 / (𝑧 · 𝑧)))))
8777, 86bitr4d 285 . . . . . . . . . . . . . 14 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑃 ≤ (𝑧 · 𝑧) ↔ ((𝑃 / 𝑧) · (𝑃 / 𝑧)) ≤ 𝑃))
8887biimpd 232 . . . . . . . . . . . . 13 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑃 ≤ (𝑧 · 𝑧) → ((𝑃 / 𝑧) · (𝑃 / 𝑧)) ≤ 𝑃))
8978, 47, 39divcan2d 11610 . . . . . . . . . . . . . 14 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑧 · (𝑃 / 𝑧)) = 𝑃)
90 dvds0lem 15828 . . . . . . . . . . . . . 14 (((𝑧 ∈ ℤ ∧ (𝑃 / 𝑧) ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ (𝑧 · (𝑃 / 𝑧)) = 𝑃) → (𝑃 / 𝑧) ∥ 𝑃)
9136, 44, 41, 89, 90syl31anc 1375 . . . . . . . . . . . . 13 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑃 / 𝑧) ∥ 𝑃)
9288, 91jctird 530 . . . . . . . . . . . 12 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑃 ≤ (𝑧 · 𝑧) → (((𝑃 / 𝑧) · (𝑃 / 𝑧)) ≤ 𝑃 ∧ (𝑃 / 𝑧) ∥ 𝑃)))
93 oveq12 7222 . . . . . . . . . . . . . . . 16 ((𝑥 = (𝑃 / 𝑧) ∧ 𝑥 = (𝑃 / 𝑧)) → (𝑥 · 𝑥) = ((𝑃 / 𝑧) · (𝑃 / 𝑧)))
9493anidms 570 . . . . . . . . . . . . . . 15 (𝑥 = (𝑃 / 𝑧) → (𝑥 · 𝑥) = ((𝑃 / 𝑧) · (𝑃 / 𝑧)))
9594breq1d 5063 . . . . . . . . . . . . . 14 (𝑥 = (𝑃 / 𝑧) → ((𝑥 · 𝑥) ≤ 𝑃 ↔ ((𝑃 / 𝑧) · (𝑃 / 𝑧)) ≤ 𝑃))
96 breq1 5056 . . . . . . . . . . . . . 14 (𝑥 = (𝑃 / 𝑧) → (𝑥𝑃 ↔ (𝑃 / 𝑧) ∥ 𝑃))
9795, 96anbi12d 634 . . . . . . . . . . . . 13 (𝑥 = (𝑃 / 𝑧) → (((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃) ↔ (((𝑃 / 𝑧) · (𝑃 / 𝑧)) ≤ 𝑃 ∧ (𝑃 / 𝑧) ∥ 𝑃)))
9897rspcev 3537 . . . . . . . . . . . 12 (((𝑃 / 𝑧) ∈ (ℤ‘2) ∧ (((𝑃 / 𝑧) · (𝑃 / 𝑧)) ≤ 𝑃 ∧ (𝑃 / 𝑧) ∥ 𝑃)) → ∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃))
9969, 92, 98syl6an 684 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑃 ≤ (𝑧 · 𝑧) → ∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)))
10070, 49letrid 10984 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → ((𝑧 · 𝑧) ≤ 𝑃𝑃 ≤ (𝑧 · 𝑧)))
10133, 99, 100mpjaod 860 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → ∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃))
102101ex 416 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((𝑧𝑃 ∧ ¬ 𝑧 = 𝑃) → ∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)))
10324, 102syl5bir 246 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (¬ (𝑧𝑃𝑧 = 𝑃) → ∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)))
104103rexlimdva 3203 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → (∃𝑧 ∈ (ℤ‘2) ¬ (𝑧𝑃𝑧 = 𝑃) → ∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)))
105 prmz 16232 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℙ → 𝑧 ∈ ℤ)
106105ad2antrl 728 . . . . . . . . . . . . . 14 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑧 ∈ ℤ)
107106zred 12282 . . . . . . . . . . . . 13 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑧 ∈ ℝ)
108107, 107remulcld 10863 . . . . . . . . . . . 12 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → (𝑧 · 𝑧) ∈ ℝ)
109 eluzelz 12448 . . . . . . . . . . . . . . 15 (𝑥 ∈ (ℤ‘2) → 𝑥 ∈ ℤ)
110109ad3antlr 731 . . . . . . . . . . . . . 14 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑥 ∈ ℤ)
111110zred 12282 . . . . . . . . . . . . 13 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑥 ∈ ℝ)
112111, 111remulcld 10863 . . . . . . . . . . . 12 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → (𝑥 · 𝑥) ∈ ℝ)
11340ad3antrrr 730 . . . . . . . . . . . . 13 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑃 ∈ ℤ)
114113zred 12282 . . . . . . . . . . . 12 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑃 ∈ ℝ)
115 eluz2nn 12480 . . . . . . . . . . . . . . 15 (𝑥 ∈ (ℤ‘2) → 𝑥 ∈ ℕ)
116115ad3antlr 731 . . . . . . . . . . . . . 14 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑥 ∈ ℕ)
117 simprr 773 . . . . . . . . . . . . . 14 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑧𝑥)
118 dvdsle 15871 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℕ) → (𝑧𝑥𝑧𝑥))
119118imp 410 . . . . . . . . . . . . . 14 (((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℕ) ∧ 𝑧𝑥) → 𝑧𝑥)
120106, 116, 117, 119syl21anc 838 . . . . . . . . . . . . 13 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑧𝑥)
121 eluzge2nn0 12483 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℕ0)
122121nn0ge0d 12153 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (ℤ‘2) → 0 ≤ 𝑧)
1232, 122syl 17 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℙ → 0 ≤ 𝑧)
124123ad2antrl 728 . . . . . . . . . . . . . 14 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 0 ≤ 𝑧)
125 nnnn0 12097 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0)
126125nn0ge0d 12153 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℕ → 0 ≤ 𝑥)
127116, 126syl 17 . . . . . . . . . . . . . 14 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 0 ≤ 𝑥)
128 le2msq 11732 . . . . . . . . . . . . . 14 (((𝑧 ∈ ℝ ∧ 0 ≤ 𝑧) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (𝑧𝑥 ↔ (𝑧 · 𝑧) ≤ (𝑥 · 𝑥)))
129107, 124, 111, 127, 128syl22anc 839 . . . . . . . . . . . . 13 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → (𝑧𝑥 ↔ (𝑧 · 𝑧) ≤ (𝑥 · 𝑥)))
130120, 129mpbid 235 . . . . . . . . . . . 12 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → (𝑧 · 𝑧) ≤ (𝑥 · 𝑥))
131 simplrl 777 . . . . . . . . . . . 12 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → (𝑥 · 𝑥) ≤ 𝑃)
132108, 112, 114, 130, 131letrd 10989 . . . . . . . . . . 11 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → (𝑧 · 𝑧) ≤ 𝑃)
133 simplrr 778 . . . . . . . . . . . 12 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑥𝑃)
134106, 110, 113, 117, 133dvdstrd 15856 . . . . . . . . . . 11 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑧𝑃)
135132, 134jc 164 . . . . . . . . . 10 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → ¬ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃))
136 exprmfct 16261 . . . . . . . . . . 11 (𝑥 ∈ (ℤ‘2) → ∃𝑧 ∈ ℙ 𝑧𝑥)
137136ad2antlr 727 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) → ∃𝑧 ∈ ℙ 𝑧𝑥)
138135, 137reximddv 3194 . . . . . . . . 9 (((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) → ∃𝑧 ∈ ℙ ¬ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃))
139138ex 416 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) → (((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃) → ∃𝑧 ∈ ℙ ¬ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃)))
140139rexlimdva 3203 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → (∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃) → ∃𝑧 ∈ ℙ ¬ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃)))
141104, 140syld 47 . . . . . 6 (𝑃 ∈ (ℤ‘2) → (∃𝑧 ∈ (ℤ‘2) ¬ (𝑧𝑃𝑧 = 𝑃) → ∃𝑧 ∈ ℙ ¬ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃)))
142 rexnal 3160 . . . . . 6 (∃𝑧 ∈ (ℤ‘2) ¬ (𝑧𝑃𝑧 = 𝑃) ↔ ¬ ∀𝑧 ∈ (ℤ‘2)(𝑧𝑃𝑧 = 𝑃))
143 rexnal 3160 . . . . . 6 (∃𝑧 ∈ ℙ ¬ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃) ↔ ¬ ∀𝑧 ∈ ℙ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃))
144141, 142, 1433imtr3g 298 . . . . 5 (𝑃 ∈ (ℤ‘2) → (¬ ∀𝑧 ∈ (ℤ‘2)(𝑧𝑃𝑧 = 𝑃) → ¬ ∀𝑧 ∈ ℙ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃)))
14523, 144impcon4bid 230 . . . 4 (𝑃 ∈ (ℤ‘2) → (∀𝑧 ∈ (ℤ‘2)(𝑧𝑃𝑧 = 𝑃) ↔ ∀𝑧 ∈ ℙ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃)))
146 prmnn 16231 . . . . . . . . 9 (𝑧 ∈ ℙ → 𝑧 ∈ ℕ)
147146nncnd 11846 . . . . . . . 8 (𝑧 ∈ ℙ → 𝑧 ∈ ℂ)
148147sqvald 13713 . . . . . . 7 (𝑧 ∈ ℙ → (𝑧↑2) = (𝑧 · 𝑧))
149148breq1d 5063 . . . . . 6 (𝑧 ∈ ℙ → ((𝑧↑2) ≤ 𝑃 ↔ (𝑧 · 𝑧) ≤ 𝑃))
150149imbi1d 345 . . . . 5 (𝑧 ∈ ℙ → (((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃) ↔ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃)))
151150ralbiia 3087 . . . 4 (∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃) ↔ ∀𝑧 ∈ ℙ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃))
152145, 151bitr4di 292 . . 3 (𝑃 ∈ (ℤ‘2) → (∀𝑧 ∈ (ℤ‘2)(𝑧𝑃𝑧 = 𝑃) ↔ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)))
153152pm5.32i 578 . 2 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ (ℤ‘2)(𝑧𝑃𝑧 = 𝑃)) ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)))
1541, 153bitri 278 1 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wne 2940  wral 3061  wrex 3062   class class class wbr 5053  cfv 6380  (class class class)co 7213  cr 10728  0cc0 10729  1c1 10730   · cmul 10734   < clt 10867  cle 10868   / cdiv 11489  cn 11830  2c2 11885  cz 12176  cuz 12438  +crp 12586  cexp 13635  cdvds 15815  cprime 16228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-fz 13096  df-seq 13575  df-exp 13636  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-dvds 15816  df-prm 16229
This theorem is referenced by:  isprm7  16265  pockthg  16459  prmlem1a  16660
  Copyright terms: Public domain W3C validator