Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > looinv | Structured version Visualization version GIF version |
Description: The Inversion Axiom of the infinite-valued sentential logic (L-infinity) of Lukasiewicz. Using dfor2 898, we can see that this essentially expresses "disjunction commutes". Theorem *2.69 of [WhiteheadRussell] p. 108. It is a special instance of the axiom "Roll", see peirceroll 85. (Contributed by NM, 12-Aug-2004.) |
Ref | Expression |
---|---|
looinv | ⊢ (((𝜑 → 𝜓) → 𝜓) → ((𝜓 → 𝜑) → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim1 83 | . 2 ⊢ (((𝜑 → 𝜓) → 𝜓) → ((𝜓 → 𝜑) → ((𝜑 → 𝜓) → 𝜑))) | |
2 | peirce 201 | . 2 ⊢ (((𝜑 → 𝜓) → 𝜑) → 𝜑) | |
3 | 1, 2 | syl6 35 | 1 ⊢ (((𝜑 → 𝜓) → 𝜓) → ((𝜓 → 𝜑) → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: merco2 1740 bj-looinvi 34674 |
Copyright terms: Public domain | W3C validator |