| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > looinv | Structured version Visualization version GIF version | ||
| Description: The Inversion Axiom of the infinite-valued sentential logic (L-infinity) of Lukasiewicz. Using dfor2 901, we can see that this essentially expresses "disjunction commutes". Theorem *2.69 of [WhiteheadRussell] p. 108. It is a special instance of the axiom "Roll", see peirceroll 85. (Contributed by NM, 12-Aug-2004.) |
| Ref | Expression |
|---|---|
| looinv | ⊢ (((𝜑 → 𝜓) → 𝜓) → ((𝜓 → 𝜑) → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imim1 83 | . 2 ⊢ (((𝜑 → 𝜓) → 𝜓) → ((𝜓 → 𝜑) → ((𝜑 → 𝜓) → 𝜑))) | |
| 2 | peirce 202 | . 2 ⊢ (((𝜑 → 𝜓) → 𝜑) → 𝜑) | |
| 3 | 1, 2 | syl6 35 | 1 ⊢ (((𝜑 → 𝜓) → 𝜓) → ((𝜓 → 𝜑) → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: merco2 1736 bj-looinvi 36584 |
| Copyright terms: Public domain | W3C validator |