| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > merco2 | Structured version Visualization version GIF version | ||
| Description: A single axiom for
propositional calculus discovered by C. A. Meredith.
This axiom has 19 symbols, sans auxiliaries. See notes in merco1 1713. (Contributed by Anthony Hart, 7-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| merco2 | ⊢ (((𝜑 → 𝜓) → ((⊥ → 𝜒) → 𝜃)) → ((𝜃 → 𝜑) → (𝜏 → (𝜂 → 𝜑)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | falim 1557 | . . . . . 6 ⊢ (⊥ → 𝜒) | |
| 2 | pm2.04 90 | . . . . . 6 ⊢ (((𝜑 → 𝜓) → ((⊥ → 𝜒) → 𝜃)) → ((⊥ → 𝜒) → ((𝜑 → 𝜓) → 𝜃))) | |
| 3 | 1, 2 | mpi 20 | . . . . 5 ⊢ (((𝜑 → 𝜓) → ((⊥ → 𝜒) → 𝜃)) → ((𝜑 → 𝜓) → 𝜃)) |
| 4 | jarl 125 | . . . . . 6 ⊢ (((𝜑 → 𝜓) → 𝜃) → (¬ 𝜑 → 𝜃)) | |
| 5 | idd 24 | . . . . . 6 ⊢ (((𝜑 → 𝜓) → 𝜃) → (𝜃 → 𝜃)) | |
| 6 | 4, 5 | jad 187 | . . . . 5 ⊢ (((𝜑 → 𝜓) → 𝜃) → ((𝜑 → 𝜃) → 𝜃)) |
| 7 | looinv 203 | . . . . 5 ⊢ (((𝜑 → 𝜃) → 𝜃) → ((𝜃 → 𝜑) → 𝜑)) | |
| 8 | 3, 6, 7 | 3syl 18 | . . . 4 ⊢ (((𝜑 → 𝜓) → ((⊥ → 𝜒) → 𝜃)) → ((𝜃 → 𝜑) → 𝜑)) |
| 9 | 8 | a1dd 50 | . . 3 ⊢ (((𝜑 → 𝜓) → ((⊥ → 𝜒) → 𝜃)) → ((𝜃 → 𝜑) → (𝜏 → 𝜑))) |
| 10 | 9 | a1i 11 | . 2 ⊢ (𝜂 → (((𝜑 → 𝜓) → ((⊥ → 𝜒) → 𝜃)) → ((𝜃 → 𝜑) → (𝜏 → 𝜑)))) |
| 11 | 10 | com4l 92 | 1 ⊢ (((𝜑 → 𝜓) → ((⊥ → 𝜒) → 𝜃)) → ((𝜃 → 𝜑) → (𝜏 → (𝜂 → 𝜑)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊥wfal 1552 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-tru 1543 df-fal 1553 |
| This theorem is referenced by: mercolem1 1737 mercolem2 1738 mercolem3 1739 mercolem4 1740 mercolem5 1741 mercolem6 1742 mercolem7 1743 mercolem8 1744 re1tbw4 1748 |
| Copyright terms: Public domain | W3C validator |