Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imim1 | Structured version Visualization version GIF version |
Description: A closed form of syllogism (see syl 17). Theorem *2.06 of [WhiteheadRussell] p. 100. Its associated inference is imim1i 63. (Contributed by NM, 29-Dec-1992.) (Proof shortened by Wolf Lammen, 25-May-2013.) |
Ref | Expression |
---|---|
imim1 | ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜒) → (𝜑 → 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
2 | 1 | imim1d 82 | 1 ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜒) → (𝜑 → 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: pm2.83 84 peirceroll 85 imim12 105 looinv 202 pm3.33 761 a2and 841 impsingle 1631 tarski-bernays-ax2 1644 tbw-ax1 1704 moim 2544 mndind 18381 tb-ax1 34499 bj-imim21 34658 bj-cbvalimt 34747 bj-cbveximt 34748 al2imVD 42371 syl5impVD 42372 hbimpgVD 42413 hbalgVD 42414 ax6e2ndeqVD 42418 2sb5ndVD 42419 |
Copyright terms: Public domain | W3C validator |