MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imim1 Structured version   Visualization version   GIF version

Theorem imim1 83
Description: A closed form of syllogism (see syl 17). Theorem *2.06 of [WhiteheadRussell] p. 100. Its associated inference is imim1i 63. (Contributed by NM, 29-Dec-1992.) (Proof shortened by Wolf Lammen, 25-May-2013.)
Assertion
Ref Expression
imim1 ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))

Proof of Theorem imim1
StepHypRef Expression
1 id 22 . 2 ((𝜑𝜓) → (𝜑𝜓))
21imim1d 82 1 ((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  pm2.83  84  peirceroll  85  imim12  105  looinv  202  pm3.33  764  a2and  844  impsingle  1630  tarski-bernays-ax2  1643  tbw-ax1  1703  moim  2539  mndind  18709  tb-ax1  35268  bj-imim21  35427  bj-cbvalimt  35516  bj-cbveximt  35517  al2imVD  43623  syl5impVD  43624  hbimpgVD  43665  hbalgVD  43666  ax6e2ndeqVD  43670  2sb5ndVD  43671
  Copyright terms: Public domain W3C validator