| Mathbox for Jarvin Udandy | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mdandyvr3 | Structured version Visualization version GIF version | ||
| Description: Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) | 
| Ref | Expression | 
|---|---|
| mdandyvr3.1 | ⊢ (𝜑 ↔ 𝜁) | 
| mdandyvr3.2 | ⊢ (𝜓 ↔ 𝜎) | 
| mdandyvr3.3 | ⊢ (𝜒 ↔ 𝜓) | 
| mdandyvr3.4 | ⊢ (𝜃 ↔ 𝜓) | 
| mdandyvr3.5 | ⊢ (𝜏 ↔ 𝜑) | 
| mdandyvr3.6 | ⊢ (𝜂 ↔ 𝜑) | 
| Ref | Expression | 
|---|---|
| mdandyvr3 | ⊢ ((((𝜒 ↔ 𝜎) ∧ (𝜃 ↔ 𝜎)) ∧ (𝜏 ↔ 𝜁)) ∧ (𝜂 ↔ 𝜁)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mdandyvr3.3 | . . . . 5 ⊢ (𝜒 ↔ 𝜓) | |
| 2 | mdandyvr3.2 | . . . . 5 ⊢ (𝜓 ↔ 𝜎) | |
| 3 | 1, 2 | bitri 275 | . . . 4 ⊢ (𝜒 ↔ 𝜎) | 
| 4 | mdandyvr3.4 | . . . . 5 ⊢ (𝜃 ↔ 𝜓) | |
| 5 | 4, 2 | bitri 275 | . . . 4 ⊢ (𝜃 ↔ 𝜎) | 
| 6 | 3, 5 | pm3.2i 470 | . . 3 ⊢ ((𝜒 ↔ 𝜎) ∧ (𝜃 ↔ 𝜎)) | 
| 7 | mdandyvr3.5 | . . . 4 ⊢ (𝜏 ↔ 𝜑) | |
| 8 | mdandyvr3.1 | . . . 4 ⊢ (𝜑 ↔ 𝜁) | |
| 9 | 7, 8 | bitri 275 | . . 3 ⊢ (𝜏 ↔ 𝜁) | 
| 10 | 6, 9 | pm3.2i 470 | . 2 ⊢ (((𝜒 ↔ 𝜎) ∧ (𝜃 ↔ 𝜎)) ∧ (𝜏 ↔ 𝜁)) | 
| 11 | mdandyvr3.6 | . . 3 ⊢ (𝜂 ↔ 𝜑) | |
| 12 | 11, 8 | bitri 275 | . 2 ⊢ (𝜂 ↔ 𝜁) | 
| 13 | 10, 12 | pm3.2i 470 | 1 ⊢ ((((𝜒 ↔ 𝜎) ∧ (𝜃 ↔ 𝜎)) ∧ (𝜏 ↔ 𝜁)) ∧ (𝜂 ↔ 𝜁)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 | 
| This theorem is referenced by: mdandyvr12 46923 | 
| Copyright terms: Public domain | W3C validator |