MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-an Structured version   Visualization version   GIF version

Definition df-an 400
Description: Define conjunction (logical "and"). Definition of [Margaris] p. 49. When both the left and right operand are true, the result is true; when either is false, the result is false. For example, it is true that (2 = 2 ∧ 3 = 3). After we define the constant true (df-tru 1546) and the constant false (df-fal 1556), we will be able to prove these truth table values: ((⊤ ∧ ⊤) ↔ ⊤) (truantru 1576), ((⊤ ∧ ⊥) ↔ ⊥) (truanfal 1577), ((⊥ ∧ ⊤) ↔ ⊥) (falantru 1578), and ((⊥ ∧ ⊥) ↔ ⊥) (falanfal 1579).

This is our first use of the biconditional connective in a definition; we use the biconditional connective in place of the traditional "<=def=>", which means the same thing, except that we can manipulate the biconditional connective directly in proofs rather than having to rely on an informal definition substitution rule. Note that if we mechanically substitute ¬ (𝜑 → ¬ 𝜓) for (𝜑𝜓), we end up with an instance of previously proved theorem biid 264. This is the justification for the definition, along with the fact that it introduces a new symbol . Contrast with (df-or 848), (wi 4), (df-nan 1488), and (df-xor 1508). (Contributed by NM, 5-Jan-1993.)

Assertion
Ref Expression
df-an ((𝜑𝜓) ↔ ¬ (𝜑 → ¬ 𝜓))

Detailed syntax breakdown of Definition df-an
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 wps . . 3 wff 𝜓
31, 2wa 399 . 2 wff (𝜑𝜓)
42wn 3 . . . 4 wff ¬ 𝜓
51, 4wi 4 . . 3 wff (𝜑 → ¬ 𝜓)
65wn 3 . 2 wff ¬ (𝜑 → ¬ 𝜓)
73, 6wb 209 1 wff ((𝜑𝜓) ↔ ¬ (𝜑 → ¬ 𝜓))
Colors of variables: wff setvar class
This definition is referenced by:  pm4.63  401  imnan  403  imp  410  ex  416  dfbi2  478  pm5.32  577  pm4.54  987  nfand  1905  nfan1  2200  dfac5lem4  9788  kmlem3  9814  axrepprim  33518  axunprim  33519  axregprim  33521  axinfprim  33522  axacprim  33523  nolt02o  33800  dfxor4  41236  df3an2  41239  expandan  41768  ismnuprim  41774  pm11.52  41867
  Copyright terms: Public domain W3C validator