MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-an Structured version   Visualization version   GIF version

Definition df-an 396
Description: Define conjunction (logical "and"). Definition of [Margaris] p. 49. When both the left and right operand are true, the result is true; when either is false, the result is false. For example, it is true that (2 = 2 ∧ 3 = 3). After we define the constant true (df-tru 1542) and the constant false (df-fal 1552), we will be able to prove these truth table values: ((⊤ ∧ ⊤) ↔ ⊤) (truantru 1572), ((⊤ ∧ ⊥) ↔ ⊥) (truanfal 1573), ((⊥ ∧ ⊤) ↔ ⊥) (falantru 1574), and ((⊥ ∧ ⊥) ↔ ⊥) (falanfal 1575).

This is our first use of the biconditional connective in a definition; we use the biconditional connective in place of the traditional "<=def=>", which means the same thing, except that we can manipulate the biconditional connective directly in proofs rather than having to rely on an informal definition substitution rule. Note that if we mechanically substitute ¬ (𝜑 → ¬ 𝜓) for (𝜑𝜓), we end up with an instance of previously proved theorem biid 261. This is the justification for the definition, along with the fact that it introduces a new symbol . Contrast with (df-or 848), (wi 4), (df-nan 1491), and (df-xor 1511). (Contributed by NM, 5-Jan-1993.)

Assertion
Ref Expression
df-an ((𝜑𝜓) ↔ ¬ (𝜑 → ¬ 𝜓))

Detailed syntax breakdown of Definition df-an
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 wps . . 3 wff 𝜓
31, 2wa 395 . 2 wff (𝜑𝜓)
42wn 3 . . . 4 wff ¬ 𝜓
51, 4wi 4 . . 3 wff (𝜑 → ¬ 𝜓)
65wn 3 . 2 wff ¬ (𝜑 → ¬ 𝜓)
73, 6wb 206 1 wff ((𝜑𝜓) ↔ ¬ (𝜑 → ¬ 𝜓))
Colors of variables: wff setvar class
This definition is referenced by:  pm4.63  397  imnan  399  imp  406  ex  412  dfbi2  474  pm5.32  573  pm4.54  988  nfand  1896  nfan1  2199  dfac5lem4  10149  dfac5lem4OLD  10151  kmlem3  10176  nolt02o  27691  axrepprim  35639  axunprim  35640  axregprim  35642  axinfprim  35643  axacprim  35644  aks6d1c6lem3  42110  orddif0suc  43222  dfxor4  43720  df3an2  43723  expandan  44248  ismnuprim  44254  pm11.52  44347
  Copyright terms: Public domain W3C validator