MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-an Structured version   Visualization version   GIF version

Definition df-an 396
Description: Define conjunction (logical "and"). Definition of [Margaris] p. 49. When both the left and right operand are true, the result is true; when either is false, the result is false. For example, it is true that (2 = 2 ∧ 3 = 3). After we define the constant true (df-tru 1540) and the constant false (df-fal 1550), we will be able to prove these truth table values: ((⊤ ∧ ⊤) ↔ ⊤) (truantru 1570), ((⊤ ∧ ⊥) ↔ ⊥) (truanfal 1571), ((⊥ ∧ ⊤) ↔ ⊥) (falantru 1572), and ((⊥ ∧ ⊥) ↔ ⊥) (falanfal 1573).

This is our first use of the biconditional connective in a definition; we use the biconditional connective in place of the traditional "<=def=>", which means the same thing, except that we can manipulate the biconditional connective directly in proofs rather than having to rely on an informal definition substitution rule. Note that if we mechanically substitute ¬ (𝜑 → ¬ 𝜓) for (𝜑𝜓), we end up with an instance of previously proved theorem biid 261. This is the justification for the definition, along with the fact that it introduces a new symbol . Contrast with (df-or 847), (wi 4), (df-nan 1489), and (df-xor 1509). (Contributed by NM, 5-Jan-1993.)

Assertion
Ref Expression
df-an ((𝜑𝜓) ↔ ¬ (𝜑 → ¬ 𝜓))

Detailed syntax breakdown of Definition df-an
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 wps . . 3 wff 𝜓
31, 2wa 395 . 2 wff (𝜑𝜓)
42wn 3 . . . 4 wff ¬ 𝜓
51, 4wi 4 . . 3 wff (𝜑 → ¬ 𝜓)
65wn 3 . 2 wff ¬ (𝜑 → ¬ 𝜓)
73, 6wb 206 1 wff ((𝜑𝜓) ↔ ¬ (𝜑 → ¬ 𝜓))
Colors of variables: wff setvar class
This definition is referenced by:  pm4.63  397  imnan  399  imp  406  ex  412  dfbi2  474  pm5.32  573  pm4.54  987  nfand  1896  nfan1  2201  dfac5lem4  10195  dfac5lem4OLD  10197  kmlem3  10222  nolt02o  27758  axrepprim  35664  axunprim  35665  axregprim  35667  axinfprim  35668  axacprim  35669  aks6d1c6lem3  42129  orddif0suc  43230  dfxor4  43728  df3an2  43731  expandan  44257  ismnuprim  44263  pm11.52  44356
  Copyright terms: Public domain W3C validator