MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-an Structured version   Visualization version   GIF version

Definition df-an 396
Description: Define conjunction (logical "and"). Definition of [Margaris] p. 49. When both the left and right operand are true, the result is true; when either is false, the result is false. For example, it is true that (2 = 2 ∧ 3 = 3). After we define the constant true (df-tru 1539) and the constant false (df-fal 1549), we will be able to prove these truth table values: ((⊤ ∧ ⊤) ↔ ⊤) (truantru 1569), ((⊤ ∧ ⊥) ↔ ⊥) (truanfal 1570), ((⊥ ∧ ⊤) ↔ ⊥) (falantru 1571), and ((⊥ ∧ ⊥) ↔ ⊥) (falanfal 1572).

This is our first use of the biconditional connective in a definition; we use the biconditional connective in place of the traditional "<=def=>", which means the same thing, except that we can manipulate the biconditional connective directly in proofs rather than having to rely on an informal definition substitution rule. Note that if we mechanically substitute ¬ (𝜑 → ¬ 𝜓) for (𝜑𝜓), we end up with an instance of previously proved theorem biid 261. This is the justification for the definition, along with the fact that it introduces a new symbol . Contrast with (df-or 848), (wi 4), (df-nan 1488), and (df-xor 1508). (Contributed by NM, 5-Jan-1993.)

Assertion
Ref Expression
df-an ((𝜑𝜓) ↔ ¬ (𝜑 → ¬ 𝜓))

Detailed syntax breakdown of Definition df-an
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 wps . . 3 wff 𝜓
31, 2wa 395 . 2 wff (𝜑𝜓)
42wn 3 . . . 4 wff ¬ 𝜓
51, 4wi 4 . . 3 wff (𝜑 → ¬ 𝜓)
65wn 3 . 2 wff ¬ (𝜑 → ¬ 𝜓)
73, 6wb 206 1 wff ((𝜑𝜓) ↔ ¬ (𝜑 → ¬ 𝜓))
Colors of variables: wff setvar class
This definition is referenced by:  pm4.63  397  imnan  399  imp  406  ex  412  dfbi2  474  pm5.32  573  pm4.54  988  nfand  1894  nfan1  2197  dfac5lem4  10163  dfac5lem4OLD  10165  kmlem3  10190  nolt02o  27754  axrepprim  35681  axunprim  35682  axregprim  35684  axinfprim  35685  axacprim  35686  aks6d1c6lem3  42153  orddif0suc  43257  dfxor4  43755  df3an2  43758  expandan  44283  ismnuprim  44289  pm11.52  44382
  Copyright terms: Public domain W3C validator