MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-an Structured version   Visualization version   GIF version

Definition df-an 396
Description: Define conjunction (logical "and"). Definition of [Margaris] p. 49. When both the left and right operand are true, the result is true; when either is false, the result is false. For example, it is true that (2 = 2 ∧ 3 = 3). After we define the constant true (df-tru 1544) and the constant false (df-fal 1554), we will be able to prove these truth table values: ((⊤ ∧ ⊤) ↔ ⊤) (truantru 1574), ((⊤ ∧ ⊥) ↔ ⊥) (truanfal 1575), ((⊥ ∧ ⊤) ↔ ⊥) (falantru 1576), and ((⊥ ∧ ⊥) ↔ ⊥) (falanfal 1577).

This is our first use of the biconditional connective in a definition; we use the biconditional connective in place of the traditional "<=def=>", which means the same thing, except that we can manipulate the biconditional connective directly in proofs rather than having to rely on an informal definition substitution rule. Note that if we mechanically substitute ¬ (𝜑 → ¬ 𝜓) for (𝜑𝜓), we end up with an instance of previously proved theorem biid 261. This is the justification for the definition, along with the fact that it introduces a new symbol . Contrast with (df-or 848), (wi 4), (df-nan 1493), and (df-xor 1513). (Contributed by NM, 5-Jan-1993.)

Assertion
Ref Expression
df-an ((𝜑𝜓) ↔ ¬ (𝜑 → ¬ 𝜓))

Detailed syntax breakdown of Definition df-an
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 wps . . 3 wff 𝜓
31, 2wa 395 . 2 wff (𝜑𝜓)
42wn 3 . . . 4 wff ¬ 𝜓
51, 4wi 4 . . 3 wff (𝜑 → ¬ 𝜓)
65wn 3 . 2 wff ¬ (𝜑 → ¬ 𝜓)
73, 6wb 206 1 wff ((𝜑𝜓) ↔ ¬ (𝜑 → ¬ 𝜓))
Colors of variables: wff setvar class
This definition is referenced by:  pm4.63  397  imnan  399  imp  406  ex  412  dfbi2  474  pm5.32  573  pm4.54  988  nfand  1898  nfan1  2203  dfac5lem4  10014  dfac5lem4OLD  10016  kmlem3  10041  nolt02o  27632  axregs  35133  axrepprim  35734  axunprim  35735  axregprim  35737  axinfprim  35738  axacprim  35739  aks6d1c6lem3  42204  orddif0suc  43300  dfxor4  43798  df3an2  43801  expandan  44320  ismnuprim  44326  pm11.52  44419
  Copyright terms: Public domain W3C validator