MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-an Structured version   Visualization version   GIF version

Definition df-an 396
Description: Define conjunction (logical "and"). Definition of [Margaris] p. 49. When both the left and right operand are true, the result is true; when either is false, the result is false. For example, it is true that (2 = 2 ∧ 3 = 3). After we define the constant true (df-tru 1544) and the constant false (df-fal 1554), we will be able to prove these truth table values: ((⊤ ∧ ⊤) ↔ ⊤) (truantru 1574), ((⊤ ∧ ⊥) ↔ ⊥) (truanfal 1575), ((⊥ ∧ ⊤) ↔ ⊥) (falantru 1576), and ((⊥ ∧ ⊥) ↔ ⊥) (falanfal 1577).

This is our first use of the biconditional connective in a definition; we use the biconditional connective in place of the traditional "<=def=>", which means the same thing, except that we can manipulate the biconditional connective directly in proofs rather than having to rely on an informal definition substitution rule. Note that if we mechanically substitute ¬ (𝜑 → ¬ 𝜓) for (𝜑𝜓), we end up with an instance of previously proved theorem biid 261. This is the justification for the definition, along with the fact that it introduces a new symbol . Contrast with (df-or 848), (wi 4), (df-nan 1493), and (df-xor 1513). (Contributed by NM, 5-Jan-1993.)

Assertion
Ref Expression
df-an ((𝜑𝜓) ↔ ¬ (𝜑 → ¬ 𝜓))

Detailed syntax breakdown of Definition df-an
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 wps . . 3 wff 𝜓
31, 2wa 395 . 2 wff (𝜑𝜓)
42wn 3 . . . 4 wff ¬ 𝜓
51, 4wi 4 . . 3 wff (𝜑 → ¬ 𝜓)
65wn 3 . 2 wff ¬ (𝜑 → ¬ 𝜓)
73, 6wb 206 1 wff ((𝜑𝜓) ↔ ¬ (𝜑 → ¬ 𝜓))
Colors of variables: wff setvar class
This definition is referenced by:  pm4.63  397  imnan  399  imp  406  ex  412  dfbi2  474  pm5.32  573  pm4.54  988  nfand  1898  nfan1  2205  dfac5lem4  10024  dfac5lem4OLD  10026  kmlem3  10051  nolt02o  27635  axregs  35166  axrepprim  35767  axunprim  35768  axregprim  35770  axinfprim  35771  axacprim  35772  aks6d1c6lem3  42285  orddif0suc  43385  dfxor4  43883  df3an2  43886  expandan  44405  ismnuprim  44411  pm11.52  44504
  Copyright terms: Public domain W3C validator