MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-an Structured version   Visualization version   GIF version

Definition df-an 396
Description: Define conjunction (logical "and"). Definition of [Margaris] p. 49. When both the left and right operand are true, the result is true; when either is false, the result is false. For example, it is true that (2 = 2 ∧ 3 = 3). After we define the constant true (df-tru 1543) and the constant false (df-fal 1553), we will be able to prove these truth table values: ((⊤ ∧ ⊤) ↔ ⊤) (truantru 1573), ((⊤ ∧ ⊥) ↔ ⊥) (truanfal 1574), ((⊥ ∧ ⊤) ↔ ⊥) (falantru 1575), and ((⊥ ∧ ⊥) ↔ ⊥) (falanfal 1576).

This is our first use of the biconditional connective in a definition; we use the biconditional connective in place of the traditional "<=def=>", which means the same thing, except that we can manipulate the biconditional connective directly in proofs rather than having to rely on an informal definition substitution rule. Note that if we mechanically substitute ¬ (𝜑 → ¬ 𝜓) for (𝜑𝜓), we end up with an instance of previously proved theorem biid 261. This is the justification for the definition, along with the fact that it introduces a new symbol . Contrast with (df-or 848), (wi 4), (df-nan 1492), and (df-xor 1512). (Contributed by NM, 5-Jan-1993.)

Assertion
Ref Expression
df-an ((𝜑𝜓) ↔ ¬ (𝜑 → ¬ 𝜓))

Detailed syntax breakdown of Definition df-an
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 wps . . 3 wff 𝜓
31, 2wa 395 . 2 wff (𝜑𝜓)
42wn 3 . . . 4 wff ¬ 𝜓
51, 4wi 4 . . 3 wff (𝜑 → ¬ 𝜓)
65wn 3 . 2 wff ¬ (𝜑 → ¬ 𝜓)
73, 6wb 206 1 wff ((𝜑𝜓) ↔ ¬ (𝜑 → ¬ 𝜓))
Colors of variables: wff setvar class
This definition is referenced by:  pm4.63  397  imnan  399  imp  406  ex  412  dfbi2  474  pm5.32  573  pm4.54  988  nfand  1897  nfan1  2200  dfac5lem4  10138  dfac5lem4OLD  10140  kmlem3  10165  nolt02o  27657  axrepprim  35665  axunprim  35666  axregprim  35668  axinfprim  35669  axacprim  35670  aks6d1c6lem3  42131  orddif0suc  43239  dfxor4  43737  df3an2  43740  expandan  44260  ismnuprim  44266  pm11.52  44359
  Copyright terms: Public domain W3C validator