MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-an Structured version   Visualization version   GIF version

Definition df-an 396
Description: Define conjunction (logical "and"). Definition of [Margaris] p. 49. When both the left and right operand are true, the result is true; when either is false, the result is false. For example, it is true that (2 = 2 ∧ 3 = 3). After we define the constant true (df-tru 1543) and the constant false (df-fal 1553), we will be able to prove these truth table values: ((⊤ ∧ ⊤) ↔ ⊤) (truantru 1573), ((⊤ ∧ ⊥) ↔ ⊥) (truanfal 1574), ((⊥ ∧ ⊤) ↔ ⊥) (falantru 1575), and ((⊥ ∧ ⊥) ↔ ⊥) (falanfal 1576).

This is our first use of the biconditional connective in a definition; we use the biconditional connective in place of the traditional "<=def=>", which means the same thing, except that we can manipulate the biconditional connective directly in proofs rather than having to rely on an informal definition substitution rule. Note that if we mechanically substitute ¬ (𝜑 → ¬ 𝜓) for (𝜑𝜓), we end up with an instance of previously proved theorem biid 261. This is the justification for the definition, along with the fact that it introduces a new symbol . Contrast with (df-or 848), (wi 4), (df-nan 1492), and (df-xor 1512). (Contributed by NM, 5-Jan-1993.)

Assertion
Ref Expression
df-an ((𝜑𝜓) ↔ ¬ (𝜑 → ¬ 𝜓))

Detailed syntax breakdown of Definition df-an
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 wps . . 3 wff 𝜓
31, 2wa 395 . 2 wff (𝜑𝜓)
42wn 3 . . . 4 wff ¬ 𝜓
51, 4wi 4 . . 3 wff (𝜑 → ¬ 𝜓)
65wn 3 . 2 wff ¬ (𝜑 → ¬ 𝜓)
73, 6wb 206 1 wff ((𝜑𝜓) ↔ ¬ (𝜑 → ¬ 𝜓))
Colors of variables: wff setvar class
This definition is referenced by:  pm4.63  397  imnan  399  imp  406  ex  412  dfbi2  474  pm5.32  573  pm4.54  988  nfand  1897  nfan1  2201  dfac5lem4  10097  dfac5lem4OLD  10099  kmlem3  10124  nolt02o  27614  axrepprim  35686  axunprim  35687  axregprim  35689  axinfprim  35690  axacprim  35691  aks6d1c6lem3  42152  orddif0suc  43229  dfxor4  43727  df3an2  43730  expandan  44249  ismnuprim  44255  pm11.52  44348
  Copyright terms: Public domain W3C validator