| Metamath
Proof Explorer Theorem List (p. 470 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | abnotataxb 46901 | Assuming not a, b, there exists a proof a-xor-b.) (Contributed by Jarvin Udandy, 31-Aug-2016.) |
| ⊢ ¬ 𝜑 & ⊢ 𝜓 ⇒ ⊢ (𝜑 ⊻ 𝜓) | ||
| Theorem | conimpf 46902 | Assuming a, not b, and a implies b, there exists a proof that a is false.) (Contributed by Jarvin Udandy, 28-Aug-2016.) |
| ⊢ 𝜑 & ⊢ ¬ 𝜓 & ⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 ↔ ⊥) | ||
| Theorem | conimpfalt 46903 | Assuming a, not b, and a implies b, there exists a proof that a is false.) (Contributed by Jarvin Udandy, 29-Aug-2016.) |
| ⊢ 𝜑 & ⊢ ¬ 𝜓 & ⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 ↔ ⊥) | ||
| Theorem | aistbisfiaxb 46904 | Given a is equivalent to T., Given b is equivalent to F. there exists a proof for a-xor-b. (Contributed by Jarvin Udandy, 31-Aug-2016.) |
| ⊢ (𝜑 ↔ ⊤) & ⊢ (𝜓 ↔ ⊥) ⇒ ⊢ (𝜑 ⊻ 𝜓) | ||
| Theorem | aisfbistiaxb 46905 | Given a is equivalent to F., Given b is equivalent to T., there exists a proof for a-xor-b. (Contributed by Jarvin Udandy, 31-Aug-2016.) |
| ⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) ⇒ ⊢ (𝜑 ⊻ 𝜓) | ||
| Theorem | aifftbifffaibif 46906 | Given a is equivalent to T., Given b is equivalent to F., there exists a proof for that a implies b is false. (Contributed by Jarvin Udandy, 7-Sep-2020.) |
| ⊢ (𝜑 ↔ ⊤) & ⊢ (𝜓 ↔ ⊥) ⇒ ⊢ ((𝜑 → 𝜓) ↔ ⊥) | ||
| Theorem | aifftbifffaibifff 46907 | Given a is equivalent to T., Given b is equivalent to F., there exists a proof for that a iff b is false. (Contributed by Jarvin Udandy, 7-Sep-2020.) |
| ⊢ (𝜑 ↔ ⊤) & ⊢ (𝜓 ↔ ⊥) ⇒ ⊢ ((𝜑 ↔ 𝜓) ↔ ⊥) | ||
| Theorem | atnaiana 46908 | Given a, it is not the case a implies a self contradiction. (Contributed by Jarvin Udandy, 7-Sep-2020.) |
| ⊢ 𝜑 ⇒ ⊢ ¬ (𝜑 → (𝜑 ∧ ¬ 𝜑)) | ||
| Theorem | ainaiaandna 46909 | Given a, a implies it is not the case a implies a self contradiction. (Contributed by Jarvin Udandy, 7-Sep-2020.) |
| ⊢ 𝜑 ⇒ ⊢ (𝜑 → ¬ (𝜑 → (𝜑 ∧ ¬ 𝜑))) | ||
| Theorem | abcdta 46910 | Given (((a and b) and c) and d), there exists a proof for a. (Contributed by Jarvin Udandy, 3-Sep-2016.) |
| ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ⇒ ⊢ 𝜑 | ||
| Theorem | abcdtb 46911 | Given (((a and b) and c) and d), there exists a proof for b. (Contributed by Jarvin Udandy, 3-Sep-2016.) |
| ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ⇒ ⊢ 𝜓 | ||
| Theorem | abcdtc 46912 | Given (((a and b) and c) and d), there exists a proof for c. (Contributed by Jarvin Udandy, 3-Sep-2016.) |
| ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ⇒ ⊢ 𝜒 | ||
| Theorem | abcdtd 46913 | Given (((a and b) and c) and d), there exists a proof for d. (Contributed by Jarvin Udandy, 3-Sep-2016.) |
| ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ⇒ ⊢ 𝜃 | ||
| Theorem | abciffcbatnabciffncba 46914 | Operands in a biconditional expression converted negated. Additionally biconditional converted to show antecedent implies sequent. Closed form. (Contributed by Jarvin Udandy, 7-Sep-2020.) |
| ⊢ (¬ ((𝜑 ∧ 𝜓) ∧ 𝜒) → ¬ ((𝜒 ∧ 𝜓) ∧ 𝜑)) | ||
| Theorem | abciffcbatnabciffncbai 46915 | Operands in a biconditional expression converted negated. Additionally biconditional converted to show antecedent implies sequent. (Contributed by Jarvin Udandy, 7-Sep-2020.) |
| ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜒 ∧ 𝜓) ∧ 𝜑)) ⇒ ⊢ (¬ ((𝜑 ∧ 𝜓) ∧ 𝜒) → ¬ ((𝜒 ∧ 𝜓) ∧ 𝜑)) | ||
| Theorem | nabctnabc 46916 | not ( a -> ( b /\ c ) ) we can show: not a implies ( b /\ c ). (Contributed by Jarvin Udandy, 7-Sep-2020.) |
| ⊢ ¬ (𝜑 → (𝜓 ∧ 𝜒)) ⇒ ⊢ (¬ 𝜑 → (𝜓 ∧ 𝜒)) | ||
| Theorem | jabtaib 46917 | For when pm3.4 lacks a pm3.4i. (Contributed by Jarvin Udandy, 9-Sep-2020.) |
| ⊢ (𝜑 ∧ 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | onenotinotbothi 46918 | From one negated implication it is not the case its nonnegated form and a random others are both true. (Contributed by Jarvin Udandy, 11-Sep-2020.) |
| ⊢ ¬ (𝜑 → 𝜓) ⇒ ⊢ ¬ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜃)) | ||
| Theorem | twonotinotbothi 46919 | From these two negated implications it is not the case their nonnegated forms are both true. (Contributed by Jarvin Udandy, 11-Sep-2020.) |
| ⊢ ¬ (𝜑 → 𝜓) & ⊢ ¬ (𝜒 → 𝜃) ⇒ ⊢ ¬ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜃)) | ||
| Theorem | clifte 46920 | show d is the same as an if-else involving a,b. (Contributed by Jarvin Udandy, 20-Sep-2020.) |
| ⊢ (𝜑 ∧ ¬ 𝜒) & ⊢ 𝜃 ⇒ ⊢ (𝜃 ↔ ((𝜑 ∧ ¬ 𝜒) ∨ (𝜓 ∧ 𝜒))) | ||
| Theorem | cliftet 46921 | show d is the same as an if-else involving a,b. (Contributed by Jarvin Udandy, 20-Sep-2020.) |
| ⊢ (𝜑 ∧ 𝜒) & ⊢ 𝜃 ⇒ ⊢ (𝜃 ↔ ((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ ¬ 𝜒))) | ||
| Theorem | clifteta 46922 | show d is the same as an if-else involving a,b. (Contributed by Jarvin Udandy, 20-Sep-2020.) |
| ⊢ ((𝜑 ∧ ¬ 𝜒) ∨ (𝜓 ∧ 𝜒)) & ⊢ 𝜃 ⇒ ⊢ (𝜃 ↔ ((𝜑 ∧ ¬ 𝜒) ∨ (𝜓 ∧ 𝜒))) | ||
| Theorem | cliftetb 46923 | show d is the same as an if-else involving a,b. (Contributed by Jarvin Udandy, 20-Sep-2020.) |
| ⊢ ((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ ¬ 𝜒)) & ⊢ 𝜃 ⇒ ⊢ (𝜃 ↔ ((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ ¬ 𝜒))) | ||
| Theorem | confun 46924 | Given the hypotheses there exists a proof for (c implies ( d iff a ) ). (Contributed by Jarvin Udandy, 6-Sep-2020.) |
| ⊢ 𝜑 & ⊢ (𝜒 → 𝜓) & ⊢ (𝜒 → 𝜃) & ⊢ (𝜑 → (𝜑 → 𝜓)) ⇒ ⊢ (𝜒 → (𝜃 ↔ 𝜑)) | ||
| Theorem | confun2 46925 | Confun simplified to two propositions. (Contributed by Jarvin Udandy, 6-Sep-2020.) |
| ⊢ (𝜓 → 𝜑) & ⊢ (𝜓 → ¬ (𝜓 → (𝜓 ∧ ¬ 𝜓))) & ⊢ ((𝜓 → 𝜑) → ((𝜓 → 𝜑) → 𝜑)) ⇒ ⊢ (𝜓 → (¬ (𝜓 → (𝜓 ∧ ¬ 𝜓)) ↔ (𝜓 → 𝜑))) | ||
| Theorem | confun3 46926 | Confun's more complex form where both a,d have been "defined". (Contributed by Jarvin Udandy, 6-Sep-2020.) |
| ⊢ (𝜑 ↔ (𝜒 → 𝜓)) & ⊢ (𝜃 ↔ ¬ (𝜒 → (𝜒 ∧ ¬ 𝜒))) & ⊢ (𝜒 → 𝜓) & ⊢ (𝜒 → ¬ (𝜒 → (𝜒 ∧ ¬ 𝜒))) & ⊢ ((𝜒 → 𝜓) → ((𝜒 → 𝜓) → 𝜓)) ⇒ ⊢ (𝜒 → (¬ (𝜒 → (𝜒 ∧ ¬ 𝜒)) ↔ (𝜒 → 𝜓))) | ||
| Theorem | confun4 46927 | An attempt at derivative. Resisted simplest path to a proof. (Contributed by Jarvin Udandy, 6-Sep-2020.) |
| ⊢ 𝜑 & ⊢ ((𝜑 → 𝜓) → 𝜓) & ⊢ (𝜓 → (𝜑 → 𝜒)) & ⊢ ((𝜒 → 𝜃) → ((𝜑 → 𝜃) ↔ 𝜓)) & ⊢ (𝜏 ↔ (𝜒 → 𝜃)) & ⊢ (𝜂 ↔ ¬ (𝜒 → (𝜒 ∧ ¬ 𝜒))) & ⊢ 𝜓 & ⊢ (𝜒 → 𝜃) ⇒ ⊢ (𝜒 → (𝜓 → 𝜏)) | ||
| Theorem | confun5 46928 | An attempt at derivative. Resisted simplest path to a proof. Interesting that ch, th, ta, et were all provable. (Contributed by Jarvin Udandy, 7-Sep-2020.) |
| ⊢ 𝜑 & ⊢ ((𝜑 → 𝜓) → 𝜓) & ⊢ (𝜓 → (𝜑 → 𝜒)) & ⊢ ((𝜒 → 𝜃) → ((𝜑 → 𝜃) ↔ 𝜓)) & ⊢ (𝜏 ↔ (𝜒 → 𝜃)) & ⊢ (𝜂 ↔ ¬ (𝜒 → (𝜒 ∧ ¬ 𝜒))) & ⊢ 𝜓 & ⊢ (𝜒 → 𝜃) ⇒ ⊢ (𝜒 → (𝜂 ↔ 𝜏)) | ||
| Theorem | plcofph 46929 | Given, a,b and a "definition" for c, c is demonstrated. (Contributed by Jarvin Udandy, 8-Sep-2020.) |
| ⊢ (𝜒 ↔ ((((𝜑 ∧ 𝜓) ↔ 𝜑) → (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑))) ∧ (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑)))) & ⊢ 𝜑 & ⊢ 𝜓 ⇒ ⊢ 𝜒 | ||
| Theorem | pldofph 46930 | Given, a,b c, d, "definition" for e, e is demonstrated. (Contributed by Jarvin Udandy, 8-Sep-2020.) |
| ⊢ (𝜏 ↔ ((𝜒 → 𝜃) ∧ (𝜑 ↔ 𝜒) ∧ ((𝜑 → 𝜓) → (𝜓 ↔ 𝜃)))) & ⊢ 𝜑 & ⊢ 𝜓 & ⊢ 𝜒 & ⊢ 𝜃 ⇒ ⊢ 𝜏 | ||
| Theorem | plvcofph 46931 | Given, a,b,d, and "definitions" for c, e, f: f is demonstrated. (Contributed by Jarvin Udandy, 8-Sep-2020.) |
| ⊢ (𝜒 ↔ ((((𝜑 ∧ 𝜓) ↔ 𝜑) → (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑))) ∧ (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑)))) & ⊢ (𝜏 ↔ ((𝜒 → 𝜃) ∧ (𝜑 ↔ 𝜒) ∧ ((𝜑 → 𝜓) → (𝜓 ↔ 𝜃)))) & ⊢ (𝜂 ↔ (𝜒 ∧ 𝜏)) & ⊢ 𝜑 & ⊢ 𝜓 & ⊢ 𝜃 ⇒ ⊢ 𝜂 | ||
| Theorem | plvcofphax 46932 | Given, a,b,d, and "definitions" for c, e, f, g: g is demonstrated. (Contributed by Jarvin Udandy, 8-Sep-2020.) |
| ⊢ (𝜒 ↔ ((((𝜑 ∧ 𝜓) ↔ 𝜑) → (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑))) ∧ (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑)))) & ⊢ (𝜏 ↔ ((𝜒 → 𝜃) ∧ (𝜑 ↔ 𝜒) ∧ ((𝜑 → 𝜓) → (𝜓 ↔ 𝜃)))) & ⊢ (𝜂 ↔ (𝜒 ∧ 𝜏)) & ⊢ 𝜑 & ⊢ 𝜓 & ⊢ 𝜃 & ⊢ (𝜁 ↔ ¬ (𝜓 ∧ ¬ 𝜏)) ⇒ ⊢ 𝜁 | ||
| Theorem | plvofpos 46933 | rh is derivable because ONLY one of ch, th, ta, et is implied by mu. (Contributed by Jarvin Udandy, 11-Sep-2020.) |
| ⊢ (𝜒 ↔ (¬ 𝜑 ∧ ¬ 𝜓)) & ⊢ (𝜃 ↔ (¬ 𝜑 ∧ 𝜓)) & ⊢ (𝜏 ↔ (𝜑 ∧ ¬ 𝜓)) & ⊢ (𝜂 ↔ (𝜑 ∧ 𝜓)) & ⊢ (𝜁 ↔ (((((¬ ((𝜇 → 𝜒) ∧ (𝜇 → 𝜃)) ∧ ¬ ((𝜇 → 𝜒) ∧ (𝜇 → 𝜏))) ∧ ¬ ((𝜇 → 𝜒) ∧ (𝜒 → 𝜂))) ∧ ¬ ((𝜇 → 𝜃) ∧ (𝜇 → 𝜏))) ∧ ¬ ((𝜇 → 𝜃) ∧ (𝜇 → 𝜂))) ∧ ¬ ((𝜇 → 𝜏) ∧ (𝜇 → 𝜂)))) & ⊢ (𝜎 ↔ (((𝜇 → 𝜒) ∨ (𝜇 → 𝜃)) ∨ ((𝜇 → 𝜏) ∨ (𝜇 → 𝜂)))) & ⊢ (𝜌 ↔ (𝜁 ∧ 𝜎)) & ⊢ 𝜁 & ⊢ 𝜎 ⇒ ⊢ 𝜌 | ||
| Theorem | mdandyv0 46934 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
| ⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊥) & ⊢ (𝜃 ↔ ⊥) & ⊢ (𝜏 ↔ ⊥) & ⊢ (𝜂 ↔ ⊥) ⇒ ⊢ ((((𝜒 ↔ 𝜑) ∧ (𝜃 ↔ 𝜑)) ∧ (𝜏 ↔ 𝜑)) ∧ (𝜂 ↔ 𝜑)) | ||
| Theorem | mdandyv1 46935 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
| ⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊤) & ⊢ (𝜃 ↔ ⊥) & ⊢ (𝜏 ↔ ⊥) & ⊢ (𝜂 ↔ ⊥) ⇒ ⊢ ((((𝜒 ↔ 𝜓) ∧ (𝜃 ↔ 𝜑)) ∧ (𝜏 ↔ 𝜑)) ∧ (𝜂 ↔ 𝜑)) | ||
| Theorem | mdandyv2 46936 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
| ⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊥) & ⊢ (𝜃 ↔ ⊤) & ⊢ (𝜏 ↔ ⊥) & ⊢ (𝜂 ↔ ⊥) ⇒ ⊢ ((((𝜒 ↔ 𝜑) ∧ (𝜃 ↔ 𝜓)) ∧ (𝜏 ↔ 𝜑)) ∧ (𝜂 ↔ 𝜑)) | ||
| Theorem | mdandyv3 46937 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
| ⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊤) & ⊢ (𝜃 ↔ ⊤) & ⊢ (𝜏 ↔ ⊥) & ⊢ (𝜂 ↔ ⊥) ⇒ ⊢ ((((𝜒 ↔ 𝜓) ∧ (𝜃 ↔ 𝜓)) ∧ (𝜏 ↔ 𝜑)) ∧ (𝜂 ↔ 𝜑)) | ||
| Theorem | mdandyv4 46938 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
| ⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊥) & ⊢ (𝜃 ↔ ⊥) & ⊢ (𝜏 ↔ ⊤) & ⊢ (𝜂 ↔ ⊥) ⇒ ⊢ ((((𝜒 ↔ 𝜑) ∧ (𝜃 ↔ 𝜑)) ∧ (𝜏 ↔ 𝜓)) ∧ (𝜂 ↔ 𝜑)) | ||
| Theorem | mdandyv5 46939 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
| ⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊤) & ⊢ (𝜃 ↔ ⊥) & ⊢ (𝜏 ↔ ⊤) & ⊢ (𝜂 ↔ ⊥) ⇒ ⊢ ((((𝜒 ↔ 𝜓) ∧ (𝜃 ↔ 𝜑)) ∧ (𝜏 ↔ 𝜓)) ∧ (𝜂 ↔ 𝜑)) | ||
| Theorem | mdandyv6 46940 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
| ⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊥) & ⊢ (𝜃 ↔ ⊤) & ⊢ (𝜏 ↔ ⊤) & ⊢ (𝜂 ↔ ⊥) ⇒ ⊢ ((((𝜒 ↔ 𝜑) ∧ (𝜃 ↔ 𝜓)) ∧ (𝜏 ↔ 𝜓)) ∧ (𝜂 ↔ 𝜑)) | ||
| Theorem | mdandyv7 46941 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
| ⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊤) & ⊢ (𝜃 ↔ ⊤) & ⊢ (𝜏 ↔ ⊤) & ⊢ (𝜂 ↔ ⊥) ⇒ ⊢ ((((𝜒 ↔ 𝜓) ∧ (𝜃 ↔ 𝜓)) ∧ (𝜏 ↔ 𝜓)) ∧ (𝜂 ↔ 𝜑)) | ||
| Theorem | mdandyv8 46942 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
| ⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊥) & ⊢ (𝜃 ↔ ⊥) & ⊢ (𝜏 ↔ ⊥) & ⊢ (𝜂 ↔ ⊤) ⇒ ⊢ ((((𝜒 ↔ 𝜑) ∧ (𝜃 ↔ 𝜑)) ∧ (𝜏 ↔ 𝜑)) ∧ (𝜂 ↔ 𝜓)) | ||
| Theorem | mdandyv9 46943 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
| ⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊤) & ⊢ (𝜃 ↔ ⊥) & ⊢ (𝜏 ↔ ⊥) & ⊢ (𝜂 ↔ ⊤) ⇒ ⊢ ((((𝜒 ↔ 𝜓) ∧ (𝜃 ↔ 𝜑)) ∧ (𝜏 ↔ 𝜑)) ∧ (𝜂 ↔ 𝜓)) | ||
| Theorem | mdandyv10 46944 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
| ⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊥) & ⊢ (𝜃 ↔ ⊤) & ⊢ (𝜏 ↔ ⊥) & ⊢ (𝜂 ↔ ⊤) ⇒ ⊢ ((((𝜒 ↔ 𝜑) ∧ (𝜃 ↔ 𝜓)) ∧ (𝜏 ↔ 𝜑)) ∧ (𝜂 ↔ 𝜓)) | ||
| Theorem | mdandyv11 46945 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
| ⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊤) & ⊢ (𝜃 ↔ ⊤) & ⊢ (𝜏 ↔ ⊥) & ⊢ (𝜂 ↔ ⊤) ⇒ ⊢ ((((𝜒 ↔ 𝜓) ∧ (𝜃 ↔ 𝜓)) ∧ (𝜏 ↔ 𝜑)) ∧ (𝜂 ↔ 𝜓)) | ||
| Theorem | mdandyv12 46946 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
| ⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊥) & ⊢ (𝜃 ↔ ⊥) & ⊢ (𝜏 ↔ ⊤) & ⊢ (𝜂 ↔ ⊤) ⇒ ⊢ ((((𝜒 ↔ 𝜑) ∧ (𝜃 ↔ 𝜑)) ∧ (𝜏 ↔ 𝜓)) ∧ (𝜂 ↔ 𝜓)) | ||
| Theorem | mdandyv13 46947 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
| ⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊤) & ⊢ (𝜃 ↔ ⊥) & ⊢ (𝜏 ↔ ⊤) & ⊢ (𝜂 ↔ ⊤) ⇒ ⊢ ((((𝜒 ↔ 𝜓) ∧ (𝜃 ↔ 𝜑)) ∧ (𝜏 ↔ 𝜓)) ∧ (𝜂 ↔ 𝜓)) | ||
| Theorem | mdandyv14 46948 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
| ⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊥) & ⊢ (𝜃 ↔ ⊤) & ⊢ (𝜏 ↔ ⊤) & ⊢ (𝜂 ↔ ⊤) ⇒ ⊢ ((((𝜒 ↔ 𝜑) ∧ (𝜃 ↔ 𝜓)) ∧ (𝜏 ↔ 𝜓)) ∧ (𝜂 ↔ 𝜓)) | ||
| Theorem | mdandyv15 46949 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
| ⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊤) & ⊢ (𝜃 ↔ ⊤) & ⊢ (𝜏 ↔ ⊤) & ⊢ (𝜂 ↔ ⊤) ⇒ ⊢ ((((𝜒 ↔ 𝜓) ∧ (𝜃 ↔ 𝜓)) ∧ (𝜏 ↔ 𝜓)) ∧ (𝜂 ↔ 𝜓)) | ||
| Theorem | mdandyvr0 46950 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| ⊢ (𝜑 ↔ 𝜁) & ⊢ (𝜓 ↔ 𝜎) & ⊢ (𝜒 ↔ 𝜑) & ⊢ (𝜃 ↔ 𝜑) & ⊢ (𝜏 ↔ 𝜑) & ⊢ (𝜂 ↔ 𝜑) ⇒ ⊢ ((((𝜒 ↔ 𝜁) ∧ (𝜃 ↔ 𝜁)) ∧ (𝜏 ↔ 𝜁)) ∧ (𝜂 ↔ 𝜁)) | ||
| Theorem | mdandyvr1 46951 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| ⊢ (𝜑 ↔ 𝜁) & ⊢ (𝜓 ↔ 𝜎) & ⊢ (𝜒 ↔ 𝜓) & ⊢ (𝜃 ↔ 𝜑) & ⊢ (𝜏 ↔ 𝜑) & ⊢ (𝜂 ↔ 𝜑) ⇒ ⊢ ((((𝜒 ↔ 𝜎) ∧ (𝜃 ↔ 𝜁)) ∧ (𝜏 ↔ 𝜁)) ∧ (𝜂 ↔ 𝜁)) | ||
| Theorem | mdandyvr2 46952 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| ⊢ (𝜑 ↔ 𝜁) & ⊢ (𝜓 ↔ 𝜎) & ⊢ (𝜒 ↔ 𝜑) & ⊢ (𝜃 ↔ 𝜓) & ⊢ (𝜏 ↔ 𝜑) & ⊢ (𝜂 ↔ 𝜑) ⇒ ⊢ ((((𝜒 ↔ 𝜁) ∧ (𝜃 ↔ 𝜎)) ∧ (𝜏 ↔ 𝜁)) ∧ (𝜂 ↔ 𝜁)) | ||
| Theorem | mdandyvr3 46953 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| ⊢ (𝜑 ↔ 𝜁) & ⊢ (𝜓 ↔ 𝜎) & ⊢ (𝜒 ↔ 𝜓) & ⊢ (𝜃 ↔ 𝜓) & ⊢ (𝜏 ↔ 𝜑) & ⊢ (𝜂 ↔ 𝜑) ⇒ ⊢ ((((𝜒 ↔ 𝜎) ∧ (𝜃 ↔ 𝜎)) ∧ (𝜏 ↔ 𝜁)) ∧ (𝜂 ↔ 𝜁)) | ||
| Theorem | mdandyvr4 46954 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| ⊢ (𝜑 ↔ 𝜁) & ⊢ (𝜓 ↔ 𝜎) & ⊢ (𝜒 ↔ 𝜑) & ⊢ (𝜃 ↔ 𝜑) & ⊢ (𝜏 ↔ 𝜓) & ⊢ (𝜂 ↔ 𝜑) ⇒ ⊢ ((((𝜒 ↔ 𝜁) ∧ (𝜃 ↔ 𝜁)) ∧ (𝜏 ↔ 𝜎)) ∧ (𝜂 ↔ 𝜁)) | ||
| Theorem | mdandyvr5 46955 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| ⊢ (𝜑 ↔ 𝜁) & ⊢ (𝜓 ↔ 𝜎) & ⊢ (𝜒 ↔ 𝜓) & ⊢ (𝜃 ↔ 𝜑) & ⊢ (𝜏 ↔ 𝜓) & ⊢ (𝜂 ↔ 𝜑) ⇒ ⊢ ((((𝜒 ↔ 𝜎) ∧ (𝜃 ↔ 𝜁)) ∧ (𝜏 ↔ 𝜎)) ∧ (𝜂 ↔ 𝜁)) | ||
| Theorem | mdandyvr6 46956 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| ⊢ (𝜑 ↔ 𝜁) & ⊢ (𝜓 ↔ 𝜎) & ⊢ (𝜒 ↔ 𝜑) & ⊢ (𝜃 ↔ 𝜓) & ⊢ (𝜏 ↔ 𝜓) & ⊢ (𝜂 ↔ 𝜑) ⇒ ⊢ ((((𝜒 ↔ 𝜁) ∧ (𝜃 ↔ 𝜎)) ∧ (𝜏 ↔ 𝜎)) ∧ (𝜂 ↔ 𝜁)) | ||
| Theorem | mdandyvr7 46957 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| ⊢ (𝜑 ↔ 𝜁) & ⊢ (𝜓 ↔ 𝜎) & ⊢ (𝜒 ↔ 𝜓) & ⊢ (𝜃 ↔ 𝜓) & ⊢ (𝜏 ↔ 𝜓) & ⊢ (𝜂 ↔ 𝜑) ⇒ ⊢ ((((𝜒 ↔ 𝜎) ∧ (𝜃 ↔ 𝜎)) ∧ (𝜏 ↔ 𝜎)) ∧ (𝜂 ↔ 𝜁)) | ||
| Theorem | mdandyvr8 46958 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| ⊢ (𝜑 ↔ 𝜁) & ⊢ (𝜓 ↔ 𝜎) & ⊢ (𝜒 ↔ 𝜑) & ⊢ (𝜃 ↔ 𝜑) & ⊢ (𝜏 ↔ 𝜑) & ⊢ (𝜂 ↔ 𝜓) ⇒ ⊢ ((((𝜒 ↔ 𝜁) ∧ (𝜃 ↔ 𝜁)) ∧ (𝜏 ↔ 𝜁)) ∧ (𝜂 ↔ 𝜎)) | ||
| Theorem | mdandyvr9 46959 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| ⊢ (𝜑 ↔ 𝜁) & ⊢ (𝜓 ↔ 𝜎) & ⊢ (𝜒 ↔ 𝜓) & ⊢ (𝜃 ↔ 𝜑) & ⊢ (𝜏 ↔ 𝜑) & ⊢ (𝜂 ↔ 𝜓) ⇒ ⊢ ((((𝜒 ↔ 𝜎) ∧ (𝜃 ↔ 𝜁)) ∧ (𝜏 ↔ 𝜁)) ∧ (𝜂 ↔ 𝜎)) | ||
| Theorem | mdandyvr10 46960 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| ⊢ (𝜑 ↔ 𝜁) & ⊢ (𝜓 ↔ 𝜎) & ⊢ (𝜒 ↔ 𝜑) & ⊢ (𝜃 ↔ 𝜓) & ⊢ (𝜏 ↔ 𝜑) & ⊢ (𝜂 ↔ 𝜓) ⇒ ⊢ ((((𝜒 ↔ 𝜁) ∧ (𝜃 ↔ 𝜎)) ∧ (𝜏 ↔ 𝜁)) ∧ (𝜂 ↔ 𝜎)) | ||
| Theorem | mdandyvr11 46961 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| ⊢ (𝜑 ↔ 𝜁) & ⊢ (𝜓 ↔ 𝜎) & ⊢ (𝜒 ↔ 𝜓) & ⊢ (𝜃 ↔ 𝜓) & ⊢ (𝜏 ↔ 𝜑) & ⊢ (𝜂 ↔ 𝜓) ⇒ ⊢ ((((𝜒 ↔ 𝜎) ∧ (𝜃 ↔ 𝜎)) ∧ (𝜏 ↔ 𝜁)) ∧ (𝜂 ↔ 𝜎)) | ||
| Theorem | mdandyvr12 46962 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| ⊢ (𝜑 ↔ 𝜁) & ⊢ (𝜓 ↔ 𝜎) & ⊢ (𝜒 ↔ 𝜑) & ⊢ (𝜃 ↔ 𝜑) & ⊢ (𝜏 ↔ 𝜓) & ⊢ (𝜂 ↔ 𝜓) ⇒ ⊢ ((((𝜒 ↔ 𝜁) ∧ (𝜃 ↔ 𝜁)) ∧ (𝜏 ↔ 𝜎)) ∧ (𝜂 ↔ 𝜎)) | ||
| Theorem | mdandyvr13 46963 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| ⊢ (𝜑 ↔ 𝜁) & ⊢ (𝜓 ↔ 𝜎) & ⊢ (𝜒 ↔ 𝜓) & ⊢ (𝜃 ↔ 𝜑) & ⊢ (𝜏 ↔ 𝜓) & ⊢ (𝜂 ↔ 𝜓) ⇒ ⊢ ((((𝜒 ↔ 𝜎) ∧ (𝜃 ↔ 𝜁)) ∧ (𝜏 ↔ 𝜎)) ∧ (𝜂 ↔ 𝜎)) | ||
| Theorem | mdandyvr14 46964 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| ⊢ (𝜑 ↔ 𝜁) & ⊢ (𝜓 ↔ 𝜎) & ⊢ (𝜒 ↔ 𝜑) & ⊢ (𝜃 ↔ 𝜓) & ⊢ (𝜏 ↔ 𝜓) & ⊢ (𝜂 ↔ 𝜓) ⇒ ⊢ ((((𝜒 ↔ 𝜁) ∧ (𝜃 ↔ 𝜎)) ∧ (𝜏 ↔ 𝜎)) ∧ (𝜂 ↔ 𝜎)) | ||
| Theorem | mdandyvr15 46965 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| ⊢ (𝜑 ↔ 𝜁) & ⊢ (𝜓 ↔ 𝜎) & ⊢ (𝜒 ↔ 𝜓) & ⊢ (𝜃 ↔ 𝜓) & ⊢ (𝜏 ↔ 𝜓) & ⊢ (𝜂 ↔ 𝜓) ⇒ ⊢ ((((𝜒 ↔ 𝜎) ∧ (𝜃 ↔ 𝜎)) ∧ (𝜏 ↔ 𝜎)) ∧ (𝜂 ↔ 𝜎)) | ||
| Theorem | mdandyvrx0 46966 | Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| ⊢ (𝜑 ⊻ 𝜁) & ⊢ (𝜓 ⊻ 𝜎) & ⊢ (𝜒 ↔ 𝜑) & ⊢ (𝜃 ↔ 𝜑) & ⊢ (𝜏 ↔ 𝜑) & ⊢ (𝜂 ↔ 𝜑) ⇒ ⊢ ((((𝜒 ⊻ 𝜁) ∧ (𝜃 ⊻ 𝜁)) ∧ (𝜏 ⊻ 𝜁)) ∧ (𝜂 ⊻ 𝜁)) | ||
| Theorem | mdandyvrx1 46967 | Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| ⊢ (𝜑 ⊻ 𝜁) & ⊢ (𝜓 ⊻ 𝜎) & ⊢ (𝜒 ↔ 𝜓) & ⊢ (𝜃 ↔ 𝜑) & ⊢ (𝜏 ↔ 𝜑) & ⊢ (𝜂 ↔ 𝜑) ⇒ ⊢ ((((𝜒 ⊻ 𝜎) ∧ (𝜃 ⊻ 𝜁)) ∧ (𝜏 ⊻ 𝜁)) ∧ (𝜂 ⊻ 𝜁)) | ||
| Theorem | mdandyvrx2 46968 | Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| ⊢ (𝜑 ⊻ 𝜁) & ⊢ (𝜓 ⊻ 𝜎) & ⊢ (𝜒 ↔ 𝜑) & ⊢ (𝜃 ↔ 𝜓) & ⊢ (𝜏 ↔ 𝜑) & ⊢ (𝜂 ↔ 𝜑) ⇒ ⊢ ((((𝜒 ⊻ 𝜁) ∧ (𝜃 ⊻ 𝜎)) ∧ (𝜏 ⊻ 𝜁)) ∧ (𝜂 ⊻ 𝜁)) | ||
| Theorem | mdandyvrx3 46969 | Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| ⊢ (𝜑 ⊻ 𝜁) & ⊢ (𝜓 ⊻ 𝜎) & ⊢ (𝜒 ↔ 𝜓) & ⊢ (𝜃 ↔ 𝜓) & ⊢ (𝜏 ↔ 𝜑) & ⊢ (𝜂 ↔ 𝜑) ⇒ ⊢ ((((𝜒 ⊻ 𝜎) ∧ (𝜃 ⊻ 𝜎)) ∧ (𝜏 ⊻ 𝜁)) ∧ (𝜂 ⊻ 𝜁)) | ||
| Theorem | mdandyvrx4 46970 | Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| ⊢ (𝜑 ⊻ 𝜁) & ⊢ (𝜓 ⊻ 𝜎) & ⊢ (𝜒 ↔ 𝜑) & ⊢ (𝜃 ↔ 𝜑) & ⊢ (𝜏 ↔ 𝜓) & ⊢ (𝜂 ↔ 𝜑) ⇒ ⊢ ((((𝜒 ⊻ 𝜁) ∧ (𝜃 ⊻ 𝜁)) ∧ (𝜏 ⊻ 𝜎)) ∧ (𝜂 ⊻ 𝜁)) | ||
| Theorem | mdandyvrx5 46971 | Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| ⊢ (𝜑 ⊻ 𝜁) & ⊢ (𝜓 ⊻ 𝜎) & ⊢ (𝜒 ↔ 𝜓) & ⊢ (𝜃 ↔ 𝜑) & ⊢ (𝜏 ↔ 𝜓) & ⊢ (𝜂 ↔ 𝜑) ⇒ ⊢ ((((𝜒 ⊻ 𝜎) ∧ (𝜃 ⊻ 𝜁)) ∧ (𝜏 ⊻ 𝜎)) ∧ (𝜂 ⊻ 𝜁)) | ||
| Theorem | mdandyvrx6 46972 | Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| ⊢ (𝜑 ⊻ 𝜁) & ⊢ (𝜓 ⊻ 𝜎) & ⊢ (𝜒 ↔ 𝜑) & ⊢ (𝜃 ↔ 𝜓) & ⊢ (𝜏 ↔ 𝜓) & ⊢ (𝜂 ↔ 𝜑) ⇒ ⊢ ((((𝜒 ⊻ 𝜁) ∧ (𝜃 ⊻ 𝜎)) ∧ (𝜏 ⊻ 𝜎)) ∧ (𝜂 ⊻ 𝜁)) | ||
| Theorem | mdandyvrx7 46973 | Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| ⊢ (𝜑 ⊻ 𝜁) & ⊢ (𝜓 ⊻ 𝜎) & ⊢ (𝜒 ↔ 𝜓) & ⊢ (𝜃 ↔ 𝜓) & ⊢ (𝜏 ↔ 𝜓) & ⊢ (𝜂 ↔ 𝜑) ⇒ ⊢ ((((𝜒 ⊻ 𝜎) ∧ (𝜃 ⊻ 𝜎)) ∧ (𝜏 ⊻ 𝜎)) ∧ (𝜂 ⊻ 𝜁)) | ||
| Theorem | mdandyvrx8 46974 | Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| ⊢ (𝜑 ⊻ 𝜁) & ⊢ (𝜓 ⊻ 𝜎) & ⊢ (𝜒 ↔ 𝜑) & ⊢ (𝜃 ↔ 𝜑) & ⊢ (𝜏 ↔ 𝜑) & ⊢ (𝜂 ↔ 𝜓) ⇒ ⊢ ((((𝜒 ⊻ 𝜁) ∧ (𝜃 ⊻ 𝜁)) ∧ (𝜏 ⊻ 𝜁)) ∧ (𝜂 ⊻ 𝜎)) | ||
| Theorem | mdandyvrx9 46975 | Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| ⊢ (𝜑 ⊻ 𝜁) & ⊢ (𝜓 ⊻ 𝜎) & ⊢ (𝜒 ↔ 𝜓) & ⊢ (𝜃 ↔ 𝜑) & ⊢ (𝜏 ↔ 𝜑) & ⊢ (𝜂 ↔ 𝜓) ⇒ ⊢ ((((𝜒 ⊻ 𝜎) ∧ (𝜃 ⊻ 𝜁)) ∧ (𝜏 ⊻ 𝜁)) ∧ (𝜂 ⊻ 𝜎)) | ||
| Theorem | mdandyvrx10 46976 | Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| ⊢ (𝜑 ⊻ 𝜁) & ⊢ (𝜓 ⊻ 𝜎) & ⊢ (𝜒 ↔ 𝜑) & ⊢ (𝜃 ↔ 𝜓) & ⊢ (𝜏 ↔ 𝜑) & ⊢ (𝜂 ↔ 𝜓) ⇒ ⊢ ((((𝜒 ⊻ 𝜁) ∧ (𝜃 ⊻ 𝜎)) ∧ (𝜏 ⊻ 𝜁)) ∧ (𝜂 ⊻ 𝜎)) | ||
| Theorem | mdandyvrx11 46977 | Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| ⊢ (𝜑 ⊻ 𝜁) & ⊢ (𝜓 ⊻ 𝜎) & ⊢ (𝜒 ↔ 𝜓) & ⊢ (𝜃 ↔ 𝜓) & ⊢ (𝜏 ↔ 𝜑) & ⊢ (𝜂 ↔ 𝜓) ⇒ ⊢ ((((𝜒 ⊻ 𝜎) ∧ (𝜃 ⊻ 𝜎)) ∧ (𝜏 ⊻ 𝜁)) ∧ (𝜂 ⊻ 𝜎)) | ||
| Theorem | mdandyvrx12 46978 | Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| ⊢ (𝜑 ⊻ 𝜁) & ⊢ (𝜓 ⊻ 𝜎) & ⊢ (𝜒 ↔ 𝜑) & ⊢ (𝜃 ↔ 𝜑) & ⊢ (𝜏 ↔ 𝜓) & ⊢ (𝜂 ↔ 𝜓) ⇒ ⊢ ((((𝜒 ⊻ 𝜁) ∧ (𝜃 ⊻ 𝜁)) ∧ (𝜏 ⊻ 𝜎)) ∧ (𝜂 ⊻ 𝜎)) | ||
| Theorem | mdandyvrx13 46979 | Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| ⊢ (𝜑 ⊻ 𝜁) & ⊢ (𝜓 ⊻ 𝜎) & ⊢ (𝜒 ↔ 𝜓) & ⊢ (𝜃 ↔ 𝜑) & ⊢ (𝜏 ↔ 𝜓) & ⊢ (𝜂 ↔ 𝜓) ⇒ ⊢ ((((𝜒 ⊻ 𝜎) ∧ (𝜃 ⊻ 𝜁)) ∧ (𝜏 ⊻ 𝜎)) ∧ (𝜂 ⊻ 𝜎)) | ||
| Theorem | mdandyvrx14 46980 | Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| ⊢ (𝜑 ⊻ 𝜁) & ⊢ (𝜓 ⊻ 𝜎) & ⊢ (𝜒 ↔ 𝜑) & ⊢ (𝜃 ↔ 𝜓) & ⊢ (𝜏 ↔ 𝜓) & ⊢ (𝜂 ↔ 𝜓) ⇒ ⊢ ((((𝜒 ⊻ 𝜁) ∧ (𝜃 ⊻ 𝜎)) ∧ (𝜏 ⊻ 𝜎)) ∧ (𝜂 ⊻ 𝜎)) | ||
| Theorem | mdandyvrx15 46981 | Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| ⊢ (𝜑 ⊻ 𝜁) & ⊢ (𝜓 ⊻ 𝜎) & ⊢ (𝜒 ↔ 𝜓) & ⊢ (𝜃 ↔ 𝜓) & ⊢ (𝜏 ↔ 𝜓) & ⊢ (𝜂 ↔ 𝜓) ⇒ ⊢ ((((𝜒 ⊻ 𝜎) ∧ (𝜃 ⊻ 𝜎)) ∧ (𝜏 ⊻ 𝜎)) ∧ (𝜂 ⊻ 𝜎)) | ||
| Theorem | H15NH16TH15IH16 46982 | Given 15 hypotheses and a 16th hypothesis, there exists a proof the 15 imply the 16th. (Contributed by Jarvin Udandy, 8-Sep-2016.) |
| ⊢ 𝜑 & ⊢ 𝜓 & ⊢ 𝜒 & ⊢ 𝜃 & ⊢ 𝜏 & ⊢ 𝜂 & ⊢ 𝜁 & ⊢ 𝜎 & ⊢ 𝜌 & ⊢ 𝜇 & ⊢ 𝜆 & ⊢ 𝜅 & ⊢ jph & ⊢ jps & ⊢ jch & ⊢ jth ⇒ ⊢ (((((((((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) ∧ 𝜅) ∧ jph) ∧ jps) ∧ jch) → jth) | ||
| Theorem | dandysum2p2e4 46983 |
CONTRADICTION PROVED AT 1 + 1 = 2 .
Given the right hypotheses we can prove a dandysum of 2+2=4. The qed step is the value '4' in Decimal BEING IMPLIED by the hypotheses. Note: Values that when added would exceed a 4bit value are not supported. Note: Digits begin from left (least) to right (greatest). E.g., 1000 would be '1', 0100 would be '2', 0010 would be '4'. How to perceive the hypotheses' bits in order: ( th <-> F. ), ( ta <-> F. ) Would be input value X's first bit, and input value Y's first bit. ( et <-> F ), ( ze <-> F. ) would be input value X's second bit, and input value Y's second bit. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
| ⊢ (𝜑 ↔ (𝜃 ∧ 𝜏)) & ⊢ (𝜓 ↔ (𝜂 ∧ 𝜁)) & ⊢ (𝜒 ↔ (𝜎 ∧ 𝜌)) & ⊢ (𝜃 ↔ ⊥) & ⊢ (𝜏 ↔ ⊥) & ⊢ (𝜂 ↔ ⊤) & ⊢ (𝜁 ↔ ⊤) & ⊢ (𝜎 ↔ ⊥) & ⊢ (𝜌 ↔ ⊥) & ⊢ (𝜇 ↔ ⊥) & ⊢ (𝜆 ↔ ⊥) & ⊢ (𝜅 ↔ ((𝜃 ⊻ 𝜏) ⊻ (𝜃 ∧ 𝜏))) & ⊢ (jph ↔ ((𝜂 ⊻ 𝜁) ∨ 𝜑)) & ⊢ (jps ↔ ((𝜎 ⊻ 𝜌) ∨ 𝜓)) & ⊢ (jch ↔ ((𝜇 ⊻ 𝜆) ∨ 𝜒)) ⇒ ⊢ ((((((((((((((((𝜑 ↔ (𝜃 ∧ 𝜏)) ∧ (𝜓 ↔ (𝜂 ∧ 𝜁))) ∧ (𝜒 ↔ (𝜎 ∧ 𝜌))) ∧ (𝜃 ↔ ⊥)) ∧ (𝜏 ↔ ⊥)) ∧ (𝜂 ↔ ⊤)) ∧ (𝜁 ↔ ⊤)) ∧ (𝜎 ↔ ⊥)) ∧ (𝜌 ↔ ⊥)) ∧ (𝜇 ↔ ⊥)) ∧ (𝜆 ↔ ⊥)) ∧ (𝜅 ↔ ((𝜃 ⊻ 𝜏) ⊻ (𝜃 ∧ 𝜏)))) ∧ (jph ↔ ((𝜂 ⊻ 𝜁) ∨ 𝜑))) ∧ (jps ↔ ((𝜎 ⊻ 𝜌) ∨ 𝜓))) ∧ (jch ↔ ((𝜇 ⊻ 𝜆) ∨ 𝜒))) → ((((𝜅 ↔ ⊥) ∧ (jph ↔ ⊥)) ∧ (jps ↔ ⊤)) ∧ (jch ↔ ⊥))) | ||
| Theorem | mdandysum2p2e4 46984 |
CONTRADICTION PROVED AT 1 + 1 = 2 . Luckily Mario Carneiro did a
successful version of his own.
See Mario's Relevant Work: Half adder and full adder in propositional calculus. Given the right hypotheses we can prove a dandysum of 2+2=4. The qed step is the value '4' in Decimal BEING IMPLIED by the hypotheses. Note: Values that when added would exceed a 4bit value are not supported. Note: Digits begin from left (least) to right (greatest). E.g., 1000 would be '1', 0100 would be '2'. 0010 would be '4'. How to perceive the hypotheses' bits in order: ( th <-> F. ), ( ta <-> F. ) Would be input value X's first bit, and input value Y's first bit. ( et <-> F. ), ( ze <-> F. ) would be input value X's second bit, and input value Y's second bit. In mdandysum2p2e4, one might imagine what jth or jta could be then do the math with their truths. Also limited to the restriction jth, jta are having opposite truths equivalent to the stated truth constants. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
| ⊢ (jth ↔ ⊥) & ⊢ (jta ↔ ⊤) & ⊢ (𝜑 ↔ (𝜃 ∧ 𝜏)) & ⊢ (𝜓 ↔ (𝜂 ∧ 𝜁)) & ⊢ (𝜒 ↔ (𝜎 ∧ 𝜌)) & ⊢ (𝜃 ↔ jth) & ⊢ (𝜏 ↔ jth) & ⊢ (𝜂 ↔ jta) & ⊢ (𝜁 ↔ jta) & ⊢ (𝜎 ↔ jth) & ⊢ (𝜌 ↔ jth) & ⊢ (𝜇 ↔ jth) & ⊢ (𝜆 ↔ jth) & ⊢ (𝜅 ↔ ((𝜃 ⊻ 𝜏) ⊻ (𝜃 ∧ 𝜏))) & ⊢ (jph ↔ ((𝜂 ⊻ 𝜁) ∨ 𝜑)) & ⊢ (jps ↔ ((𝜎 ⊻ 𝜌) ∨ 𝜓)) & ⊢ (jch ↔ ((𝜇 ⊻ 𝜆) ∨ 𝜒)) ⇒ ⊢ ((((((((((((((((𝜑 ↔ (𝜃 ∧ 𝜏)) ∧ (𝜓 ↔ (𝜂 ∧ 𝜁))) ∧ (𝜒 ↔ (𝜎 ∧ 𝜌))) ∧ (𝜃 ↔ ⊥)) ∧ (𝜏 ↔ ⊥)) ∧ (𝜂 ↔ ⊤)) ∧ (𝜁 ↔ ⊤)) ∧ (𝜎 ↔ ⊥)) ∧ (𝜌 ↔ ⊥)) ∧ (𝜇 ↔ ⊥)) ∧ (𝜆 ↔ ⊥)) ∧ (𝜅 ↔ ((𝜃 ⊻ 𝜏) ⊻ (𝜃 ∧ 𝜏)))) ∧ (jph ↔ ((𝜂 ⊻ 𝜁) ∨ 𝜑))) ∧ (jps ↔ ((𝜎 ⊻ 𝜌) ∨ 𝜓))) ∧ (jch ↔ ((𝜇 ⊻ 𝜆) ∨ 𝜒))) → ((((𝜅 ↔ ⊥) ∧ (jph ↔ ⊥)) ∧ (jps ↔ ⊤)) ∧ (jch ↔ ⊥))) | ||
| Theorem | adh-jarrsc 46985 | Replacement of a nested antecedent with an outer antecedent. Commuted simplificated form of elimination of a nested antecedent. Also holds intuitionistically. Polish prefix notation: CCCpqrCsCqr . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) |
| ⊢ (((𝜑 → 𝜓) → 𝜒) → (𝜃 → (𝜓 → 𝜒))) | ||
Minimal implicational calculus, or intuitionistic implicational calculus, or positive implicational calculus, is the implicational fragment of minimal calculus (which is also the implicational fragment of intuitionistic calculus and of positive calculus). It is sometimes called "C-pure intuitionism" since the letter C is used to denote implication in Polish prefix notation. It can be axiomatized by the inference rule of modus ponens ax-mp 5 together with the axioms { ax-1 6, ax-2 7 } (sometimes written KS), or with { imim1 83, ax-1 6, pm2.43 56 } (written B'KW), or with { imim2 58, pm2.04 90, ax-1 6, pm2.43 56 } (written BCKW), or with the single axiom adh-minim 46986, or with the single axiom adh-minimp 46998. This section proves first adh-minim 46986 from { ax-1 6, ax-2 7 }, followed by the converse, due to Ivo Thomas; and then it proves adh-minimp 46998 from { ax-1 6, ax-2 7 }, also followed by the converse, also due to Ivo Thomas. Sources for this section are * Carew Arthur Meredith, A single axiom of positive logic, The Journal of Computing Systems, volume 1, issue 3, July 1953, pages 169--170; * Ivo Thomas, On Meredith's sole positive axiom, Notre Dame Journal of Formal Logic, volume XV, number 3, July 1974, page 477, in which the derivations of { ax-1 6, ax-2 7 } from adh-minim 46986 are shortened (compared to Meredith's derivations in the aforementioned paper); * Carew Arthur Meredith and Arthur Norman Prior, Notes on the axiomatics of the propositional calculus, Notre Dame Journal of Formal Logic, volume IV, number 3, July 1963, pages 171--187; and * the webpage https://web.ics.purdue.edu/~dulrich/C-pure-intuitionism-page.htm 46986 on Dolph Edward "Ted" Ulrich's website, where these and other single axioms for the minimal implicational calculus are listed. This entire section also holds intuitionistically. Users of the Polish prefix notation also often use a compact notation for proof derivations known as the D-notation where "D" stands for "condensed Detachment". For instance, "D21" means detaching ax-1 6 from ax-2 7, that is, using modus ponens ax-mp 5 with ax-1 6 as minor premise and ax-2 7 as major premise. When the numbered lemmas surpass 10, dots are added between the numbers. D-strings are accepted by the grammar Dundotted := digit | "D" Dundotted Dundotted ; Ddotted := digit + | "D" Ddotted "." Ddotted ; Dstr := Dundotted | Ddotted . (Contributed by BJ, 11-Apr-2021.) (Revised by ADH, 10-Nov-2023.) | ||
| Theorem | adh-minim 46986 | A single axiom for minimal implicational calculus, due to Meredith. Other single axioms of the same length are known, but it is thought to be the minimal length. This is the axiom from Carew Arthur Meredith, A single axiom of positive logic, The Journal of Computing Systems, volume 1, issue 3, July 1953, pages 169--170. A two-line review by Alonzo Church of this article can be found in The Journal of Symbolic Logic, volume 19, issue 2, June 1954, page 144, https://doi.org/10.2307/2268914. Known as "HI-1" on Dolph Edward "Ted" Ulrich's web page. In the next 6 lemmas and 3 theorems, ax-1 6 and ax-2 7 are derived from this single axiom in 16 detachments (instances of ax-mp 5) in total. Polish prefix notation: CCCpqrCsCCqCrtCqt . (Contributed by ADH, 10-Nov-2023.) |
| ⊢ (((𝜑 → 𝜓) → 𝜒) → (𝜃 → ((𝜓 → (𝜒 → 𝜏)) → (𝜓 → 𝜏)))) | ||
| Theorem | adh-minim-ax1-ax2-lem1 46987 | First lemma for the derivation of ax-1 6 and ax-2 7 from adh-minim 46986 and ax-mp 5. Polish prefix notation: CpCCqCCrCCsCqtCstuCqu . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → ((𝜓 → ((𝜒 → ((𝜃 → (𝜓 → 𝜏)) → (𝜃 → 𝜏))) → 𝜂)) → (𝜓 → 𝜂))) | ||
| Theorem | adh-minim-ax1-ax2-lem2 46988 | Second lemma for the derivation of ax-1 6 and ax-2 7 from adh-minim 46986 and ax-mp 5. Polish prefix notation: CCpCCqCCrCpsCrstCpt . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜑 → ((𝜓 → ((𝜒 → (𝜑 → 𝜃)) → (𝜒 → 𝜃))) → 𝜏)) → (𝜑 → 𝜏)) | ||
| Theorem | adh-minim-ax1-ax2-lem3 46989 | Third lemma for the derivation of ax-1 6 and ax-2 7 from adh-minim 46986 and ax-mp 5. Polish prefix notation: CCpCqrCqCsCpr . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (𝜃 → (𝜑 → 𝜒)))) | ||
| Theorem | adh-minim-ax1-ax2-lem4 46990 | Fourth lemma for the derivation of ax-1 6 and ax-2 7 from adh-minim 46986 and ax-mp 5. Polish prefix notation: CCCpqrCCqCrsCqs . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (((𝜑 → 𝜓) → 𝜒) → ((𝜓 → (𝜒 → 𝜃)) → (𝜓 → 𝜃))) | ||
| Theorem | adh-minim-ax1 46991 | Derivation of ax-1 6 from adh-minim 46986 and ax-mp 5. Carew Arthur Meredith derived ax-1 6 in A single axiom of positive logic, The Journal of Computing Systems, volume 1, issue 3, July 1953, pages 169--170. However, here we follow the shortened derivation by Ivo Thomas, On Meredith's sole positive axiom, Notre Dame Journal of Formal Logic, volume XV, number 3, July 1974, page 477. Polish prefix notation: CpCqp . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 → 𝜑)) | ||
| Theorem | adh-minim-ax2-lem5 46992 | Fifth lemma for the derivation of ax-2 7 from adh-minim 46986 and ax-mp 5. Polish prefix notation: CpCCCqrsCCrCstCrt . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (((𝜓 → 𝜒) → 𝜃) → ((𝜒 → (𝜃 → 𝜏)) → (𝜒 → 𝜏)))) | ||
| Theorem | adh-minim-ax2-lem6 46993 | Sixth lemma for the derivation of ax-2 7 from adh-minim 46986 and ax-mp 5. Polish prefix notation: CCpCCCCqrsCCrCstCrtuCpu . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜑 → ((((𝜓 → 𝜒) → 𝜃) → ((𝜒 → (𝜃 → 𝜏)) → (𝜒 → 𝜏))) → 𝜂)) → (𝜑 → 𝜂)) | ||
| Theorem | adh-minim-ax2c 46994 | Derivation of a commuted form of ax-2 7 from adh-minim 46986 and ax-mp 5. Polish prefix notation: CCpqCCpCqrCpr . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜑 → 𝜓) → ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → 𝜒))) | ||
| Theorem | adh-minim-ax2 46995 | Derivation of ax-2 7 from adh-minim 46986 and ax-mp 5. Carew Arthur Meredith derived ax-2 7 in A single axiom of positive logic, The Journal of Computing Systems, volume 1, issue 3, July 1953, pages 169--170. However, here we follow the shortened derivation by Ivo Thomas, On Meredith's sole positive axiom, Notre Dame Journal of Formal Logic, volume XV, number 3, July 1974, page 477. Polish prefix notation: CCpCqrCCpqCpr . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | ||
| Theorem | adh-minim-idALT 46996 | Derivation of id 22 (reflexivity of implication, PM *2.08 WhiteheadRussell p. 101) from adh-minim-ax1 46991, adh-minim-ax2 46995, and ax-mp 5. It uses the derivation written DD211 in D-notation. (See head comment for an explanation.) Polish prefix notation: Cpp . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝜑) | ||
| Theorem | adh-minim-pm2.43 46997 | Derivation of pm2.43 56 WhiteheadRussell p. 106 (also called "hilbert" or "W") from adh-minim-ax1 46991, adh-minim-ax2 46995, and ax-mp 5. It uses the derivation written DD22D21 in D-notation. (See head comment for an explanation.) (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜑 → (𝜑 → 𝜓)) → (𝜑 → 𝜓)) | ||
| Theorem | adh-minimp 46998 | Another single axiom for minimal implicational calculus, due to Meredith. Other single axioms of the same length are known, but it is thought to be the minimal length. Among single axioms of this length, it is the one with simplest antecedents (i.e., in the corresponding ordering of binary trees which first compares left subtrees, it is the first one). Known as "HI-2" on Dolph Edward "Ted" Ulrich's web page. In the next 4 lemmas and 5 theorems, ax-1 6 and ax-2 7 are derived from this other single axiom in 20 detachments (instances of ax-mp 5) in total. Polish prefix notation: CpCCqrCCCsqCrtCqt ; or CtCCpqCCCspCqrCpr in Carew Arthur Meredith and Arthur Norman Prior, Notes on the axiomatics of the propositional calculus, Notre Dame Journal of Formal Logic, volume IV, number 3, July 1963, pages 171--187, on page 180. (Contributed by BJ, 4-Apr-2021.) (Revised by ADH, 10-Nov-2023.) |
| ⊢ (𝜑 → ((𝜓 → 𝜒) → (((𝜃 → 𝜓) → (𝜒 → 𝜏)) → (𝜓 → 𝜏)))) | ||
| Theorem | adh-minimp-jarr-imim1-ax2c-lem1 46999 | First lemma for the derivation of jarr 106, imim1 83, and a commuted form of ax-2 7, and indirectly ax-1 6 and ax-2 7, from adh-minimp 46998 and ax-mp 5. Polish prefix notation: CCpqCCCrpCqsCps . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜑 → 𝜓) → (((𝜒 → 𝜑) → (𝜓 → 𝜃)) → (𝜑 → 𝜃))) | ||
| Theorem | adh-minimp-jarr-lem2 47000 | Second lemma for the derivation of jarr 106, and indirectly ax-1 6, a commuted form of ax-2 7, and ax-2 7 proper, from adh-minimp 46998 and ax-mp 5. Polish prefix notation: CCCpqCCCrsCCCtrCsuCruvCqv . (Contributed by ADH, 10-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (((𝜑 → 𝜓) → (((𝜒 → 𝜃) → (((𝜏 → 𝜒) → (𝜃 → 𝜂)) → (𝜒 → 𝜂))) → 𝜁)) → (𝜓 → 𝜁)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |