| Metamath
Proof Explorer Theorem List (p. 470 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | sigarcol 46901* | Given three points 𝐴, 𝐵 and 𝐶 such that ¬ 𝐴 = 𝐵, the point 𝐶 lies on the line going through 𝐴 and 𝐵 iff the corresponding signed area is zero. That justifies the usage of signed area as a collinearity indicator. (Contributed by Saveliy Skresanov, 22-Sep-2017.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) & ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) & ⊢ (𝜑 → ¬ 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (((𝐴 − 𝐶)𝐺(𝐵 − 𝐶)) = 0 ↔ ∃𝑡 ∈ ℝ 𝐶 = (𝐵 + (𝑡 · (𝐴 − 𝐵))))) | ||
| Theorem | sharhght 46902* | Let 𝐴𝐵𝐶 be a triangle, and let 𝐷 lie on the line 𝐴𝐵. Then (doubled) areas of triangles 𝐴𝐷𝐶 and 𝐶𝐷𝐵 relate as lengths of corresponding bases 𝐴𝐷 and 𝐷𝐵. (Contributed by Saveliy Skresanov, 23-Sep-2017.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) & ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) & ⊢ (𝜑 → (𝐷 ∈ ℂ ∧ ((𝐴 − 𝐷)𝐺(𝐵 − 𝐷)) = 0)) ⇒ ⊢ (𝜑 → (((𝐶 − 𝐴)𝐺(𝐷 − 𝐴)) · (𝐵 − 𝐷)) = (((𝐶 − 𝐵)𝐺(𝐷 − 𝐵)) · (𝐴 − 𝐷))) | ||
| Theorem | sigaradd 46903* | Subtracting (double) area of 𝐴𝐷𝐶 from 𝐴𝐵𝐶 yields the (double) area of 𝐷𝐵𝐶. (Contributed by Saveliy Skresanov, 23-Sep-2017.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) & ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) & ⊢ (𝜑 → (𝐷 ∈ ℂ ∧ ((𝐴 − 𝐷)𝐺(𝐵 − 𝐷)) = 0)) ⇒ ⊢ (𝜑 → (((𝐵 − 𝐶)𝐺(𝐴 − 𝐶)) − ((𝐷 − 𝐶)𝐺(𝐴 − 𝐶))) = ((𝐵 − 𝐶)𝐺(𝐷 − 𝐶))) | ||
| Theorem | cevathlem1 46904 | Ceva's theorem first lemma. Multiplies three identities and divides by the common factors. (Contributed by Saveliy Skresanov, 24-Sep-2017.) |
| ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) & ⊢ (𝜑 → (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ)) & ⊢ (𝜑 → (𝐺 ∈ ℂ ∧ 𝐻 ∈ ℂ ∧ 𝐾 ∈ ℂ)) & ⊢ (𝜑 → (𝐴 ≠ 0 ∧ 𝐸 ≠ 0 ∧ 𝐶 ≠ 0)) & ⊢ (𝜑 → ((𝐴 · 𝐵) = (𝐶 · 𝐷) ∧ (𝐸 · 𝐹) = (𝐴 · 𝐺) ∧ (𝐶 · 𝐻) = (𝐸 · 𝐾))) ⇒ ⊢ (𝜑 → ((𝐵 · 𝐹) · 𝐻) = ((𝐷 · 𝐺) · 𝐾)) | ||
| Theorem | cevathlem2 46905* | Ceva's theorem second lemma. Relate (doubled) areas of triangles 𝐶𝐴𝑂 and 𝐴𝐵𝑂 with of segments 𝐵𝐷 and 𝐷𝐶. (Contributed by Saveliy Skresanov, 24-Sep-2017.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) & ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) & ⊢ (𝜑 → (𝐹 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ)) & ⊢ (𝜑 → 𝑂 ∈ ℂ) & ⊢ (𝜑 → (((𝐴 − 𝑂)𝐺(𝐷 − 𝑂)) = 0 ∧ ((𝐵 − 𝑂)𝐺(𝐸 − 𝑂)) = 0 ∧ ((𝐶 − 𝑂)𝐺(𝐹 − 𝑂)) = 0)) & ⊢ (𝜑 → (((𝐴 − 𝐹)𝐺(𝐵 − 𝐹)) = 0 ∧ ((𝐵 − 𝐷)𝐺(𝐶 − 𝐷)) = 0 ∧ ((𝐶 − 𝐸)𝐺(𝐴 − 𝐸)) = 0)) & ⊢ (𝜑 → (((𝐴 − 𝑂)𝐺(𝐵 − 𝑂)) ≠ 0 ∧ ((𝐵 − 𝑂)𝐺(𝐶 − 𝑂)) ≠ 0 ∧ ((𝐶 − 𝑂)𝐺(𝐴 − 𝑂)) ≠ 0)) ⇒ ⊢ (𝜑 → (((𝐶 − 𝑂)𝐺(𝐴 − 𝑂)) · (𝐵 − 𝐷)) = (((𝐴 − 𝑂)𝐺(𝐵 − 𝑂)) · (𝐷 − 𝐶))) | ||
| Theorem | cevath 46906* |
Ceva's theorem. Let 𝐴𝐵𝐶 be a triangle and let points 𝐹,
𝐷 and 𝐸 lie on sides 𝐴𝐵, 𝐵𝐶, 𝐶𝐴
correspondingly. Suppose that cevians 𝐴𝐷, 𝐵𝐸 and 𝐶𝐹
intersect at one point 𝑂. Then triangle's sides are
partitioned
into segments and their lengths satisfy a certain identity. Here we
obtain a bit stronger version by using complex numbers themselves
instead of their absolute values.
The proof goes by applying cevathlem2 46905 three times and then using cevathlem1 46904 to multiply obtained identities and prove the theorem. In the theorem statement we are using function 𝐺 as a collinearity indicator. For justification of that use, see sigarcol 46901. This is Metamath 100 proof #61. (Contributed by Saveliy Skresanov, 24-Sep-2017.) |
| ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) & ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ)) & ⊢ (𝜑 → (𝐹 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ)) & ⊢ (𝜑 → 𝑂 ∈ ℂ) & ⊢ (𝜑 → (((𝐴 − 𝑂)𝐺(𝐷 − 𝑂)) = 0 ∧ ((𝐵 − 𝑂)𝐺(𝐸 − 𝑂)) = 0 ∧ ((𝐶 − 𝑂)𝐺(𝐹 − 𝑂)) = 0)) & ⊢ (𝜑 → (((𝐴 − 𝐹)𝐺(𝐵 − 𝐹)) = 0 ∧ ((𝐵 − 𝐷)𝐺(𝐶 − 𝐷)) = 0 ∧ ((𝐶 − 𝐸)𝐺(𝐴 − 𝐸)) = 0)) & ⊢ (𝜑 → (((𝐴 − 𝑂)𝐺(𝐵 − 𝑂)) ≠ 0 ∧ ((𝐵 − 𝑂)𝐺(𝐶 − 𝑂)) ≠ 0 ∧ ((𝐶 − 𝑂)𝐺(𝐴 − 𝑂)) ≠ 0)) ⇒ ⊢ (𝜑 → (((𝐴 − 𝐹) · (𝐶 − 𝐸)) · (𝐵 − 𝐷)) = (((𝐹 − 𝐵) · (𝐸 − 𝐴)) · (𝐷 − 𝐶))) | ||
| Theorem | simpcntrab 46907 | The center of a simple group is trivial or the group is abelian. (Contributed by SS, 3-Jan-2024.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑍 = (Cntr‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ SimpGrp) ⇒ ⊢ (𝜑 → (𝑍 = { 0 } ∨ 𝐺 ∈ Abel)) | ||
| Theorem | et-ltneverrefl 46908 | Less-than class is never reflexive. (Contributed by Ender Ting, 22-Nov-2024.) Prefer to specify theorem domain and then apply ltnri 11219. (New usage is discouraged.) |
| ⊢ ¬ 𝐴 < 𝐴 | ||
| Theorem | et-equeucl 46909 | Alternative proof that equality is left-Euclidean, using ax7 2017 directly instead of utility theorems; done for practice. (Contributed by Ender Ting, 21-Dec-2024.) |
| ⊢ (𝑥 = 𝑧 → (𝑦 = 𝑧 → 𝑥 = 𝑦)) | ||
| Theorem | et-sqrtnegnre 46910 | The square root of a negative number is not a real number. (Contributed by Ender Ting, 5-Jan-2025.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → ¬ (√‘𝐴) ∈ ℝ) | ||
| Theorem | ormklocald 46911* | If elements of a certain sequence are ordered with respect to a certain relation, then its consecutive elements satisfy that relation (so-called "local monotonicity"). (Contributed by Ender Ting, 30-Apr-2025.) |
| ⊢ (𝜑 → 𝑅 Or 𝑆) & ⊢ (𝜑 → ∀𝑘 ∈ (0..^(𝑇 + 1))(𝐵‘𝑘) ∈ 𝑆) & ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵‘𝑘)𝑅(𝐵‘𝑡))) ⇒ ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑇)(𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1))) | ||
| Theorem | ormkglobd 46912* | If all adjacent elements of a certain sequence are ordered according to a relation which is a total order on S, then any element is so related to anything to right of it (so-called "global monotonicity"). Deduction form. (Contributed by Ender Ting, 30-Apr-2025.) |
| ⊢ (𝜑 → 𝑅 Or 𝑆) & ⊢ (𝜑 → ∀𝑘 ∈ (0..^(𝑇 + 1))(𝐵‘𝑘) ∈ 𝑆) & ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑇)(𝐵‘𝑘)𝑅(𝐵‘(𝑘 + 1))) ⇒ ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵‘𝑘)𝑅(𝐵‘𝑡))) | ||
| Theorem | natlocalincr 46913* | Global monotonicity on half-open range implies local monotonicity. Inference form. (Contributed by Ender Ting, 22-Nov-2024.) |
| ⊢ ∀𝑘 ∈ (0..^𝑇)∀𝑡 ∈ (1..^(𝑇 + 1))(𝑘 < 𝑡 → (𝐵‘𝑘) < (𝐵‘𝑡)) ⇒ ⊢ ∀𝑘 ∈ (0..^𝑇)(𝐵‘𝑘) < (𝐵‘(𝑘 + 1)) | ||
| Theorem | natglobalincr 46914* | Local monotonicity on half-open integer range implies global monotonicity. Inference form. (Contributed by Ender Ting, 23-Nov-2024.) |
| ⊢ ∀𝑘 ∈ (0..^𝑇)(𝐵‘𝑘) < (𝐵‘(𝑘 + 1)) & ⊢ 𝑇 ∈ ℤ ⇒ ⊢ ∀𝑘 ∈ (0..^𝑇)∀𝑡 ∈ ((𝑘 + 1)...𝑇)(𝐵‘𝑘) < (𝐵‘𝑡) | ||
| Theorem | evenwodadd 46915 | If an integer is multiplied by its sum with an odd number (thus changing its parity), the result is even. (Contributed by Ender Ting, 30-Apr-2025.) |
| ⊢ (𝜑 → 𝑖 ∈ ℤ) & ⊢ (𝜑 → 𝑗 ∈ ℤ) & ⊢ (𝜑 → ¬ 2 ∥ 𝑗) ⇒ ⊢ (𝜑 → 2 ∥ (𝑖 · (𝑖 + 𝑗))) | ||
| Theorem | squeezedltsq 46916 | If a real value is squeezed between two others, its square is less than square of at least one of them. Deduction form. (Contributed by Ender Ting, 31-Oct-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) & ⊢ (𝜑 → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → ((𝐵 · 𝐵) < (𝐴 · 𝐴) ∨ (𝐵 · 𝐵) < (𝐶 · 𝐶))) | ||
| Theorem | lambert0 46917 | A value of Lambert W (product logarithm) function at zero. (Contributed by Ender Ting, 13-Nov-2025.) |
| ⊢ 𝑅 = ◡(𝑥 ∈ ℂ ↦ (𝑥 · (exp‘𝑥))) ⇒ ⊢ 0𝑅0 | ||
| Theorem | lamberte 46918 | A value of Lambert W (product logarithm) function at e. (Contributed by Ender Ting, 13-Nov-2025.) |
| ⊢ 𝑅 = ◡(𝑥 ∈ ℂ ↦ (𝑥 · (exp‘𝑥))) ⇒ ⊢ e𝑅1 | ||
| Theorem | cjnpoly 46919 | Complex conjugation operator is not a polynomial with complex coefficients. Indeed; if it was, then multiplying 𝑥 conjugate by 𝑥 itself and adding 1 would yield a nowhere-zero non-constant polynomial, contrary to the fta 27015. (Contributed by Ender Ting, 8-Dec-2025.) |
| ⊢ ¬ ∗ ∈ (Poly‘ℂ) | ||
| Theorem | tannpoly 46920 | The tangent function is not a polynomial with complex coefficients, as it is not defined on the whole complex plane. (Contributed by Ender Ting, 10-Dec-2025.) |
| ⊢ ¬ tan ∈ (Poly‘ℂ) | ||
| Theorem | sinnpoly 46921 | Sine function is not a polynomial with complex coefficients. Indeed, it has infinitely many zeros but is not constant zero, contrary to fta1 26241. (Contributed by Ender Ting, 10-Dec-2025.) |
| ⊢ ¬ sin ∈ (Poly‘ℂ) | ||
| Theorem | hirstL-ax3 46922 | The third axiom of a system called "L" but proven to be a theorem since set.mm uses a different third axiom. This is named hirst after Holly P. Hirst and Jeffry L. Hirst. Axiom A3 of [Mendelson] p. 35. (Contributed by Jarvin Udandy, 7-Feb-2015.) (Proof modification is discouraged.) |
| ⊢ ((¬ 𝜑 → ¬ 𝜓) → ((¬ 𝜑 → 𝜓) → 𝜑)) | ||
| Theorem | ax3h 46923 | Recover ax-3 8 from hirstL-ax3 46922. (Contributed by Jarvin Udandy, 3-Jul-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((¬ 𝜑 → ¬ 𝜓) → (𝜓 → 𝜑)) | ||
| Theorem | aibandbiaiffaiffb 46924 | A closed form showing (a implies b and b implies a) same-as (a same-as b). (Contributed by Jarvin Udandy, 3-Sep-2016.) |
| ⊢ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) ↔ (𝜑 ↔ 𝜓)) | ||
| Theorem | aibandbiaiaiffb 46925 | A closed form showing (a implies b and b implies a) implies (a same-as b). (Contributed by Jarvin Udandy, 3-Sep-2016.) |
| ⊢ (((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓)) | ||
| Theorem | notatnand 46926 | Do not use. Use intnanr instead. Given not a, there exists a proof for not (a and b). (Contributed by Jarvin Udandy, 31-Aug-2016.) |
| ⊢ ¬ 𝜑 ⇒ ⊢ ¬ (𝜑 ∧ 𝜓) | ||
| Theorem | aistia 46927 | Given a is equivalent to ⊤, there exists a proof for a. (Contributed by Jarvin Udandy, 30-Aug-2016.) |
| ⊢ (𝜑 ↔ ⊤) ⇒ ⊢ 𝜑 | ||
| Theorem | aisfina 46928 | Given a is equivalent to ⊥, there exists a proof for not a. (Contributed by Jarvin Udandy, 30-Aug-2016.) |
| ⊢ (𝜑 ↔ ⊥) ⇒ ⊢ ¬ 𝜑 | ||
| Theorem | bothtbothsame 46929 | Given both a, b are equivalent to ⊤, there exists a proof for a is the same as b. (Contributed by Jarvin Udandy, 31-Aug-2016.) |
| ⊢ (𝜑 ↔ ⊤) & ⊢ (𝜓 ↔ ⊤) ⇒ ⊢ (𝜑 ↔ 𝜓) | ||
| Theorem | bothfbothsame 46930 | Given both a, b are equivalent to ⊥, there exists a proof for a is the same as b. (Contributed by Jarvin Udandy, 31-Aug-2016.) |
| ⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊥) ⇒ ⊢ (𝜑 ↔ 𝜓) | ||
| Theorem | aiffbbtat 46931 | Given a is equivalent to b, b is equivalent to ⊤ there exists a proof for a is equivalent to T. (Contributed by Jarvin Udandy, 29-Aug-2016.) |
| ⊢ (𝜑 ↔ 𝜓) & ⊢ (𝜓 ↔ ⊤) ⇒ ⊢ (𝜑 ↔ ⊤) | ||
| Theorem | aisbbisfaisf 46932 | Given a is equivalent to b, b is equivalent to ⊥ there exists a proof for a is equivalent to F. (Contributed by Jarvin Udandy, 30-Aug-2016.) |
| ⊢ (𝜑 ↔ 𝜓) & ⊢ (𝜓 ↔ ⊥) ⇒ ⊢ (𝜑 ↔ ⊥) | ||
| Theorem | axorbtnotaiffb 46933 | Given a is exclusive to b, there exists a proof for (not (a if-and-only-if b)); df-xor 1513 is a closed form of this. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| ⊢ (𝜑 ⊻ 𝜓) ⇒ ⊢ ¬ (𝜑 ↔ 𝜓) | ||
| Theorem | aiffnbandciffatnotciffb 46934 | Given a is equivalent to (not b), c is equivalent to a, there exists a proof for ( not ( c iff b ) ). (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| ⊢ (𝜑 ↔ ¬ 𝜓) & ⊢ (𝜒 ↔ 𝜑) ⇒ ⊢ ¬ (𝜒 ↔ 𝜓) | ||
| Theorem | axorbciffatcxorb 46935 | Given a is equivalent to (not b), c is equivalent to a. there exists a proof for ( c xor b ). (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| ⊢ (𝜑 ⊻ 𝜓) & ⊢ (𝜒 ↔ 𝜑) ⇒ ⊢ (𝜒 ⊻ 𝜓) | ||
| Theorem | aibnbna 46936 | Given a implies b, (not b), there exists a proof for (not a). (Contributed by Jarvin Udandy, 1-Sep-2016.) |
| ⊢ (𝜑 → 𝜓) & ⊢ ¬ 𝜓 ⇒ ⊢ ¬ 𝜑 | ||
| Theorem | aibnbaif 46937 | Given a implies b, not b, there exists a proof for a is F. (Contributed by Jarvin Udandy, 1-Sep-2016.) |
| ⊢ (𝜑 → 𝜓) & ⊢ ¬ 𝜓 ⇒ ⊢ (𝜑 ↔ ⊥) | ||
| Theorem | aiffbtbat 46938 | Given a is equivalent to b, T. is equivalent to b. there exists a proof for a is equivalent to T. (Contributed by Jarvin Udandy, 29-Aug-2016.) |
| ⊢ (𝜑 ↔ 𝜓) & ⊢ (⊤ ↔ 𝜓) ⇒ ⊢ (𝜑 ↔ ⊤) | ||
| Theorem | astbstanbst 46939 | Given a is equivalent to T., also given that b is equivalent to T, there exists a proof for a and b is equivalent to T. (Contributed by Jarvin Udandy, 29-Aug-2016.) |
| ⊢ (𝜑 ↔ ⊤) & ⊢ (𝜓 ↔ ⊤) ⇒ ⊢ ((𝜑 ∧ 𝜓) ↔ ⊤) | ||
| Theorem | aistbistaandb 46940 | Given a is equivalent to T., also given that b is equivalent to T, there exists a proof for (a and b). (Contributed by Jarvin Udandy, 9-Sep-2016.) |
| ⊢ (𝜑 ↔ ⊤) & ⊢ (𝜓 ↔ ⊤) ⇒ ⊢ (𝜑 ∧ 𝜓) | ||
| Theorem | aisbnaxb 46941 | Given a is equivalent to b, there exists a proof for (not (a xor b)). (Contributed by Jarvin Udandy, 28-Aug-2016.) |
| ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ¬ (𝜑 ⊻ 𝜓) | ||
| Theorem | atbiffatnnb 46942 | If a implies b, then a implies not not b. (Contributed by Jarvin Udandy, 28-Aug-2016.) |
| ⊢ ((𝜑 → 𝜓) → (𝜑 → ¬ ¬ 𝜓)) | ||
| Theorem | bisaiaisb 46943 | Application of bicom1 with a, b swapped. (Contributed by Jarvin Udandy, 31-Aug-2016.) |
| ⊢ ((𝜓 ↔ 𝜑) → (𝜑 ↔ 𝜓)) | ||
| Theorem | atbiffatnnbalt 46944 | If a implies b, then a implies not not b. (Contributed by Jarvin Udandy, 29-Aug-2016.) |
| ⊢ ((𝜑 → 𝜓) → (𝜑 → ¬ ¬ 𝜓)) | ||
| Theorem | abnotbtaxb 46945 | Assuming a, not b, there exists a proof a-xor-b.) (Contributed by Jarvin Udandy, 31-Aug-2016.) |
| ⊢ 𝜑 & ⊢ ¬ 𝜓 ⇒ ⊢ (𝜑 ⊻ 𝜓) | ||
| Theorem | abnotataxb 46946 | Assuming not a, b, there exists a proof a-xor-b.) (Contributed by Jarvin Udandy, 31-Aug-2016.) |
| ⊢ ¬ 𝜑 & ⊢ 𝜓 ⇒ ⊢ (𝜑 ⊻ 𝜓) | ||
| Theorem | conimpf 46947 | Assuming a, not b, and a implies b, there exists a proof that a is false.) (Contributed by Jarvin Udandy, 28-Aug-2016.) |
| ⊢ 𝜑 & ⊢ ¬ 𝜓 & ⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 ↔ ⊥) | ||
| Theorem | conimpfalt 46948 | Assuming a, not b, and a implies b, there exists a proof that a is false.) (Contributed by Jarvin Udandy, 29-Aug-2016.) |
| ⊢ 𝜑 & ⊢ ¬ 𝜓 & ⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 ↔ ⊥) | ||
| Theorem | aistbisfiaxb 46949 | Given a is equivalent to T., Given b is equivalent to F. there exists a proof for a-xor-b. (Contributed by Jarvin Udandy, 31-Aug-2016.) |
| ⊢ (𝜑 ↔ ⊤) & ⊢ (𝜓 ↔ ⊥) ⇒ ⊢ (𝜑 ⊻ 𝜓) | ||
| Theorem | aisfbistiaxb 46950 | Given a is equivalent to F., Given b is equivalent to T., there exists a proof for a-xor-b. (Contributed by Jarvin Udandy, 31-Aug-2016.) |
| ⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) ⇒ ⊢ (𝜑 ⊻ 𝜓) | ||
| Theorem | aifftbifffaibif 46951 | Given a is equivalent to T., Given b is equivalent to F., there exists a proof for that a implies b is false. (Contributed by Jarvin Udandy, 7-Sep-2020.) |
| ⊢ (𝜑 ↔ ⊤) & ⊢ (𝜓 ↔ ⊥) ⇒ ⊢ ((𝜑 → 𝜓) ↔ ⊥) | ||
| Theorem | aifftbifffaibifff 46952 | Given a is equivalent to T., Given b is equivalent to F., there exists a proof for that a iff b is false. (Contributed by Jarvin Udandy, 7-Sep-2020.) |
| ⊢ (𝜑 ↔ ⊤) & ⊢ (𝜓 ↔ ⊥) ⇒ ⊢ ((𝜑 ↔ 𝜓) ↔ ⊥) | ||
| Theorem | atnaiana 46953 | Given a, it is not the case a implies a self contradiction. (Contributed by Jarvin Udandy, 7-Sep-2020.) |
| ⊢ 𝜑 ⇒ ⊢ ¬ (𝜑 → (𝜑 ∧ ¬ 𝜑)) | ||
| Theorem | ainaiaandna 46954 | Given a, a implies it is not the case a implies a self contradiction. (Contributed by Jarvin Udandy, 7-Sep-2020.) |
| ⊢ 𝜑 ⇒ ⊢ (𝜑 → ¬ (𝜑 → (𝜑 ∧ ¬ 𝜑))) | ||
| Theorem | abcdta 46955 | Given (((a and b) and c) and d), there exists a proof for a. (Contributed by Jarvin Udandy, 3-Sep-2016.) |
| ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ⇒ ⊢ 𝜑 | ||
| Theorem | abcdtb 46956 | Given (((a and b) and c) and d), there exists a proof for b. (Contributed by Jarvin Udandy, 3-Sep-2016.) |
| ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ⇒ ⊢ 𝜓 | ||
| Theorem | abcdtc 46957 | Given (((a and b) and c) and d), there exists a proof for c. (Contributed by Jarvin Udandy, 3-Sep-2016.) |
| ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ⇒ ⊢ 𝜒 | ||
| Theorem | abcdtd 46958 | Given (((a and b) and c) and d), there exists a proof for d. (Contributed by Jarvin Udandy, 3-Sep-2016.) |
| ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ⇒ ⊢ 𝜃 | ||
| Theorem | abciffcbatnabciffncba 46959 | Operands in a biconditional expression converted negated. Additionally biconditional converted to show antecedent implies sequent. Closed form. (Contributed by Jarvin Udandy, 7-Sep-2020.) |
| ⊢ (¬ ((𝜑 ∧ 𝜓) ∧ 𝜒) → ¬ ((𝜒 ∧ 𝜓) ∧ 𝜑)) | ||
| Theorem | abciffcbatnabciffncbai 46960 | Operands in a biconditional expression converted negated. Additionally biconditional converted to show antecedent implies sequent. (Contributed by Jarvin Udandy, 7-Sep-2020.) |
| ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜒 ∧ 𝜓) ∧ 𝜑)) ⇒ ⊢ (¬ ((𝜑 ∧ 𝜓) ∧ 𝜒) → ¬ ((𝜒 ∧ 𝜓) ∧ 𝜑)) | ||
| Theorem | nabctnabc 46961 | not ( a -> ( b /\ c ) ) we can show: not a implies ( b /\ c ). (Contributed by Jarvin Udandy, 7-Sep-2020.) |
| ⊢ ¬ (𝜑 → (𝜓 ∧ 𝜒)) ⇒ ⊢ (¬ 𝜑 → (𝜓 ∧ 𝜒)) | ||
| Theorem | jabtaib 46962 | For when pm3.4 lacks a pm3.4i. (Contributed by Jarvin Udandy, 9-Sep-2020.) |
| ⊢ (𝜑 ∧ 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | onenotinotbothi 46963 | From one negated implication it is not the case its nonnegated form and a random others are both true. (Contributed by Jarvin Udandy, 11-Sep-2020.) |
| ⊢ ¬ (𝜑 → 𝜓) ⇒ ⊢ ¬ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜃)) | ||
| Theorem | twonotinotbothi 46964 | From these two negated implications it is not the case their nonnegated forms are both true. (Contributed by Jarvin Udandy, 11-Sep-2020.) |
| ⊢ ¬ (𝜑 → 𝜓) & ⊢ ¬ (𝜒 → 𝜃) ⇒ ⊢ ¬ ((𝜑 → 𝜓) ∧ (𝜒 → 𝜃)) | ||
| Theorem | clifte 46965 | show d is the same as an if-else involving a,b. (Contributed by Jarvin Udandy, 20-Sep-2020.) |
| ⊢ (𝜑 ∧ ¬ 𝜒) & ⊢ 𝜃 ⇒ ⊢ (𝜃 ↔ ((𝜑 ∧ ¬ 𝜒) ∨ (𝜓 ∧ 𝜒))) | ||
| Theorem | cliftet 46966 | show d is the same as an if-else involving a,b. (Contributed by Jarvin Udandy, 20-Sep-2020.) |
| ⊢ (𝜑 ∧ 𝜒) & ⊢ 𝜃 ⇒ ⊢ (𝜃 ↔ ((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ ¬ 𝜒))) | ||
| Theorem | clifteta 46967 | show d is the same as an if-else involving a,b. (Contributed by Jarvin Udandy, 20-Sep-2020.) |
| ⊢ ((𝜑 ∧ ¬ 𝜒) ∨ (𝜓 ∧ 𝜒)) & ⊢ 𝜃 ⇒ ⊢ (𝜃 ↔ ((𝜑 ∧ ¬ 𝜒) ∨ (𝜓 ∧ 𝜒))) | ||
| Theorem | cliftetb 46968 | show d is the same as an if-else involving a,b. (Contributed by Jarvin Udandy, 20-Sep-2020.) |
| ⊢ ((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ ¬ 𝜒)) & ⊢ 𝜃 ⇒ ⊢ (𝜃 ↔ ((𝜑 ∧ 𝜒) ∨ (𝜓 ∧ ¬ 𝜒))) | ||
| Theorem | confun 46969 | Given the hypotheses there exists a proof for (c implies ( d iff a ) ). (Contributed by Jarvin Udandy, 6-Sep-2020.) |
| ⊢ 𝜑 & ⊢ (𝜒 → 𝜓) & ⊢ (𝜒 → 𝜃) & ⊢ (𝜑 → (𝜑 → 𝜓)) ⇒ ⊢ (𝜒 → (𝜃 ↔ 𝜑)) | ||
| Theorem | confun2 46970 | Confun simplified to two propositions. (Contributed by Jarvin Udandy, 6-Sep-2020.) |
| ⊢ (𝜓 → 𝜑) & ⊢ (𝜓 → ¬ (𝜓 → (𝜓 ∧ ¬ 𝜓))) & ⊢ ((𝜓 → 𝜑) → ((𝜓 → 𝜑) → 𝜑)) ⇒ ⊢ (𝜓 → (¬ (𝜓 → (𝜓 ∧ ¬ 𝜓)) ↔ (𝜓 → 𝜑))) | ||
| Theorem | confun3 46971 | Confun's more complex form where both a,d have been "defined". (Contributed by Jarvin Udandy, 6-Sep-2020.) |
| ⊢ (𝜑 ↔ (𝜒 → 𝜓)) & ⊢ (𝜃 ↔ ¬ (𝜒 → (𝜒 ∧ ¬ 𝜒))) & ⊢ (𝜒 → 𝜓) & ⊢ (𝜒 → ¬ (𝜒 → (𝜒 ∧ ¬ 𝜒))) & ⊢ ((𝜒 → 𝜓) → ((𝜒 → 𝜓) → 𝜓)) ⇒ ⊢ (𝜒 → (¬ (𝜒 → (𝜒 ∧ ¬ 𝜒)) ↔ (𝜒 → 𝜓))) | ||
| Theorem | confun4 46972 | An attempt at derivative. Resisted simplest path to a proof. (Contributed by Jarvin Udandy, 6-Sep-2020.) |
| ⊢ 𝜑 & ⊢ ((𝜑 → 𝜓) → 𝜓) & ⊢ (𝜓 → (𝜑 → 𝜒)) & ⊢ ((𝜒 → 𝜃) → ((𝜑 → 𝜃) ↔ 𝜓)) & ⊢ (𝜏 ↔ (𝜒 → 𝜃)) & ⊢ (𝜂 ↔ ¬ (𝜒 → (𝜒 ∧ ¬ 𝜒))) & ⊢ 𝜓 & ⊢ (𝜒 → 𝜃) ⇒ ⊢ (𝜒 → (𝜓 → 𝜏)) | ||
| Theorem | confun5 46973 | An attempt at derivative. Resisted simplest path to a proof. Interesting that ch, th, ta, et were all provable. (Contributed by Jarvin Udandy, 7-Sep-2020.) |
| ⊢ 𝜑 & ⊢ ((𝜑 → 𝜓) → 𝜓) & ⊢ (𝜓 → (𝜑 → 𝜒)) & ⊢ ((𝜒 → 𝜃) → ((𝜑 → 𝜃) ↔ 𝜓)) & ⊢ (𝜏 ↔ (𝜒 → 𝜃)) & ⊢ (𝜂 ↔ ¬ (𝜒 → (𝜒 ∧ ¬ 𝜒))) & ⊢ 𝜓 & ⊢ (𝜒 → 𝜃) ⇒ ⊢ (𝜒 → (𝜂 ↔ 𝜏)) | ||
| Theorem | plcofph 46974 | Given, a,b and a "definition" for c, c is demonstrated. (Contributed by Jarvin Udandy, 8-Sep-2020.) |
| ⊢ (𝜒 ↔ ((((𝜑 ∧ 𝜓) ↔ 𝜑) → (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑))) ∧ (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑)))) & ⊢ 𝜑 & ⊢ 𝜓 ⇒ ⊢ 𝜒 | ||
| Theorem | pldofph 46975 | Given, a,b c, d, "definition" for e, e is demonstrated. (Contributed by Jarvin Udandy, 8-Sep-2020.) |
| ⊢ (𝜏 ↔ ((𝜒 → 𝜃) ∧ (𝜑 ↔ 𝜒) ∧ ((𝜑 → 𝜓) → (𝜓 ↔ 𝜃)))) & ⊢ 𝜑 & ⊢ 𝜓 & ⊢ 𝜒 & ⊢ 𝜃 ⇒ ⊢ 𝜏 | ||
| Theorem | plvcofph 46976 | Given, a,b,d, and "definitions" for c, e, f: f is demonstrated. (Contributed by Jarvin Udandy, 8-Sep-2020.) |
| ⊢ (𝜒 ↔ ((((𝜑 ∧ 𝜓) ↔ 𝜑) → (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑))) ∧ (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑)))) & ⊢ (𝜏 ↔ ((𝜒 → 𝜃) ∧ (𝜑 ↔ 𝜒) ∧ ((𝜑 → 𝜓) → (𝜓 ↔ 𝜃)))) & ⊢ (𝜂 ↔ (𝜒 ∧ 𝜏)) & ⊢ 𝜑 & ⊢ 𝜓 & ⊢ 𝜃 ⇒ ⊢ 𝜂 | ||
| Theorem | plvcofphax 46977 | Given, a,b,d, and "definitions" for c, e, f, g: g is demonstrated. (Contributed by Jarvin Udandy, 8-Sep-2020.) |
| ⊢ (𝜒 ↔ ((((𝜑 ∧ 𝜓) ↔ 𝜑) → (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑))) ∧ (𝜑 ∧ ¬ (𝜑 ∧ ¬ 𝜑)))) & ⊢ (𝜏 ↔ ((𝜒 → 𝜃) ∧ (𝜑 ↔ 𝜒) ∧ ((𝜑 → 𝜓) → (𝜓 ↔ 𝜃)))) & ⊢ (𝜂 ↔ (𝜒 ∧ 𝜏)) & ⊢ 𝜑 & ⊢ 𝜓 & ⊢ 𝜃 & ⊢ (𝜁 ↔ ¬ (𝜓 ∧ ¬ 𝜏)) ⇒ ⊢ 𝜁 | ||
| Theorem | plvofpos 46978 | rh is derivable because ONLY one of ch, th, ta, et is implied by mu. (Contributed by Jarvin Udandy, 11-Sep-2020.) |
| ⊢ (𝜒 ↔ (¬ 𝜑 ∧ ¬ 𝜓)) & ⊢ (𝜃 ↔ (¬ 𝜑 ∧ 𝜓)) & ⊢ (𝜏 ↔ (𝜑 ∧ ¬ 𝜓)) & ⊢ (𝜂 ↔ (𝜑 ∧ 𝜓)) & ⊢ (𝜁 ↔ (((((¬ ((𝜇 → 𝜒) ∧ (𝜇 → 𝜃)) ∧ ¬ ((𝜇 → 𝜒) ∧ (𝜇 → 𝜏))) ∧ ¬ ((𝜇 → 𝜒) ∧ (𝜒 → 𝜂))) ∧ ¬ ((𝜇 → 𝜃) ∧ (𝜇 → 𝜏))) ∧ ¬ ((𝜇 → 𝜃) ∧ (𝜇 → 𝜂))) ∧ ¬ ((𝜇 → 𝜏) ∧ (𝜇 → 𝜂)))) & ⊢ (𝜎 ↔ (((𝜇 → 𝜒) ∨ (𝜇 → 𝜃)) ∨ ((𝜇 → 𝜏) ∨ (𝜇 → 𝜂)))) & ⊢ (𝜌 ↔ (𝜁 ∧ 𝜎)) & ⊢ 𝜁 & ⊢ 𝜎 ⇒ ⊢ 𝜌 | ||
| Theorem | mdandyv0 46979 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
| ⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊥) & ⊢ (𝜃 ↔ ⊥) & ⊢ (𝜏 ↔ ⊥) & ⊢ (𝜂 ↔ ⊥) ⇒ ⊢ ((((𝜒 ↔ 𝜑) ∧ (𝜃 ↔ 𝜑)) ∧ (𝜏 ↔ 𝜑)) ∧ (𝜂 ↔ 𝜑)) | ||
| Theorem | mdandyv1 46980 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
| ⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊤) & ⊢ (𝜃 ↔ ⊥) & ⊢ (𝜏 ↔ ⊥) & ⊢ (𝜂 ↔ ⊥) ⇒ ⊢ ((((𝜒 ↔ 𝜓) ∧ (𝜃 ↔ 𝜑)) ∧ (𝜏 ↔ 𝜑)) ∧ (𝜂 ↔ 𝜑)) | ||
| Theorem | mdandyv2 46981 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
| ⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊥) & ⊢ (𝜃 ↔ ⊤) & ⊢ (𝜏 ↔ ⊥) & ⊢ (𝜂 ↔ ⊥) ⇒ ⊢ ((((𝜒 ↔ 𝜑) ∧ (𝜃 ↔ 𝜓)) ∧ (𝜏 ↔ 𝜑)) ∧ (𝜂 ↔ 𝜑)) | ||
| Theorem | mdandyv3 46982 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
| ⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊤) & ⊢ (𝜃 ↔ ⊤) & ⊢ (𝜏 ↔ ⊥) & ⊢ (𝜂 ↔ ⊥) ⇒ ⊢ ((((𝜒 ↔ 𝜓) ∧ (𝜃 ↔ 𝜓)) ∧ (𝜏 ↔ 𝜑)) ∧ (𝜂 ↔ 𝜑)) | ||
| Theorem | mdandyv4 46983 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
| ⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊥) & ⊢ (𝜃 ↔ ⊥) & ⊢ (𝜏 ↔ ⊤) & ⊢ (𝜂 ↔ ⊥) ⇒ ⊢ ((((𝜒 ↔ 𝜑) ∧ (𝜃 ↔ 𝜑)) ∧ (𝜏 ↔ 𝜓)) ∧ (𝜂 ↔ 𝜑)) | ||
| Theorem | mdandyv5 46984 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
| ⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊤) & ⊢ (𝜃 ↔ ⊥) & ⊢ (𝜏 ↔ ⊤) & ⊢ (𝜂 ↔ ⊥) ⇒ ⊢ ((((𝜒 ↔ 𝜓) ∧ (𝜃 ↔ 𝜑)) ∧ (𝜏 ↔ 𝜓)) ∧ (𝜂 ↔ 𝜑)) | ||
| Theorem | mdandyv6 46985 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
| ⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊥) & ⊢ (𝜃 ↔ ⊤) & ⊢ (𝜏 ↔ ⊤) & ⊢ (𝜂 ↔ ⊥) ⇒ ⊢ ((((𝜒 ↔ 𝜑) ∧ (𝜃 ↔ 𝜓)) ∧ (𝜏 ↔ 𝜓)) ∧ (𝜂 ↔ 𝜑)) | ||
| Theorem | mdandyv7 46986 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
| ⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊤) & ⊢ (𝜃 ↔ ⊤) & ⊢ (𝜏 ↔ ⊤) & ⊢ (𝜂 ↔ ⊥) ⇒ ⊢ ((((𝜒 ↔ 𝜓) ∧ (𝜃 ↔ 𝜓)) ∧ (𝜏 ↔ 𝜓)) ∧ (𝜂 ↔ 𝜑)) | ||
| Theorem | mdandyv8 46987 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
| ⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊥) & ⊢ (𝜃 ↔ ⊥) & ⊢ (𝜏 ↔ ⊥) & ⊢ (𝜂 ↔ ⊤) ⇒ ⊢ ((((𝜒 ↔ 𝜑) ∧ (𝜃 ↔ 𝜑)) ∧ (𝜏 ↔ 𝜑)) ∧ (𝜂 ↔ 𝜓)) | ||
| Theorem | mdandyv9 46988 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
| ⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊤) & ⊢ (𝜃 ↔ ⊥) & ⊢ (𝜏 ↔ ⊥) & ⊢ (𝜂 ↔ ⊤) ⇒ ⊢ ((((𝜒 ↔ 𝜓) ∧ (𝜃 ↔ 𝜑)) ∧ (𝜏 ↔ 𝜑)) ∧ (𝜂 ↔ 𝜓)) | ||
| Theorem | mdandyv10 46989 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
| ⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊥) & ⊢ (𝜃 ↔ ⊤) & ⊢ (𝜏 ↔ ⊥) & ⊢ (𝜂 ↔ ⊤) ⇒ ⊢ ((((𝜒 ↔ 𝜑) ∧ (𝜃 ↔ 𝜓)) ∧ (𝜏 ↔ 𝜑)) ∧ (𝜂 ↔ 𝜓)) | ||
| Theorem | mdandyv11 46990 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
| ⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊤) & ⊢ (𝜃 ↔ ⊤) & ⊢ (𝜏 ↔ ⊥) & ⊢ (𝜂 ↔ ⊤) ⇒ ⊢ ((((𝜒 ↔ 𝜓) ∧ (𝜃 ↔ 𝜓)) ∧ (𝜏 ↔ 𝜑)) ∧ (𝜂 ↔ 𝜓)) | ||
| Theorem | mdandyv12 46991 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
| ⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊥) & ⊢ (𝜃 ↔ ⊥) & ⊢ (𝜏 ↔ ⊤) & ⊢ (𝜂 ↔ ⊤) ⇒ ⊢ ((((𝜒 ↔ 𝜑) ∧ (𝜃 ↔ 𝜑)) ∧ (𝜏 ↔ 𝜓)) ∧ (𝜂 ↔ 𝜓)) | ||
| Theorem | mdandyv13 46992 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
| ⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊤) & ⊢ (𝜃 ↔ ⊥) & ⊢ (𝜏 ↔ ⊤) & ⊢ (𝜂 ↔ ⊤) ⇒ ⊢ ((((𝜒 ↔ 𝜓) ∧ (𝜃 ↔ 𝜑)) ∧ (𝜏 ↔ 𝜓)) ∧ (𝜂 ↔ 𝜓)) | ||
| Theorem | mdandyv14 46993 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
| ⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊥) & ⊢ (𝜃 ↔ ⊤) & ⊢ (𝜏 ↔ ⊤) & ⊢ (𝜂 ↔ ⊤) ⇒ ⊢ ((((𝜒 ↔ 𝜑) ∧ (𝜃 ↔ 𝜓)) ∧ (𝜏 ↔ 𝜓)) ∧ (𝜂 ↔ 𝜓)) | ||
| Theorem | mdandyv15 46994 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ph, ps accordingly. (Contributed by Jarvin Udandy, 6-Sep-2016.) |
| ⊢ (𝜑 ↔ ⊥) & ⊢ (𝜓 ↔ ⊤) & ⊢ (𝜒 ↔ ⊤) & ⊢ (𝜃 ↔ ⊤) & ⊢ (𝜏 ↔ ⊤) & ⊢ (𝜂 ↔ ⊤) ⇒ ⊢ ((((𝜒 ↔ 𝜓) ∧ (𝜃 ↔ 𝜓)) ∧ (𝜏 ↔ 𝜓)) ∧ (𝜂 ↔ 𝜓)) | ||
| Theorem | mdandyvr0 46995 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| ⊢ (𝜑 ↔ 𝜁) & ⊢ (𝜓 ↔ 𝜎) & ⊢ (𝜒 ↔ 𝜑) & ⊢ (𝜃 ↔ 𝜑) & ⊢ (𝜏 ↔ 𝜑) & ⊢ (𝜂 ↔ 𝜑) ⇒ ⊢ ((((𝜒 ↔ 𝜁) ∧ (𝜃 ↔ 𝜁)) ∧ (𝜏 ↔ 𝜁)) ∧ (𝜂 ↔ 𝜁)) | ||
| Theorem | mdandyvr1 46996 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| ⊢ (𝜑 ↔ 𝜁) & ⊢ (𝜓 ↔ 𝜎) & ⊢ (𝜒 ↔ 𝜓) & ⊢ (𝜃 ↔ 𝜑) & ⊢ (𝜏 ↔ 𝜑) & ⊢ (𝜂 ↔ 𝜑) ⇒ ⊢ ((((𝜒 ↔ 𝜎) ∧ (𝜃 ↔ 𝜁)) ∧ (𝜏 ↔ 𝜁)) ∧ (𝜂 ↔ 𝜁)) | ||
| Theorem | mdandyvr2 46997 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| ⊢ (𝜑 ↔ 𝜁) & ⊢ (𝜓 ↔ 𝜎) & ⊢ (𝜒 ↔ 𝜑) & ⊢ (𝜃 ↔ 𝜓) & ⊢ (𝜏 ↔ 𝜑) & ⊢ (𝜂 ↔ 𝜑) ⇒ ⊢ ((((𝜒 ↔ 𝜁) ∧ (𝜃 ↔ 𝜎)) ∧ (𝜏 ↔ 𝜁)) ∧ (𝜂 ↔ 𝜁)) | ||
| Theorem | mdandyvr3 46998 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| ⊢ (𝜑 ↔ 𝜁) & ⊢ (𝜓 ↔ 𝜎) & ⊢ (𝜒 ↔ 𝜓) & ⊢ (𝜃 ↔ 𝜓) & ⊢ (𝜏 ↔ 𝜑) & ⊢ (𝜂 ↔ 𝜑) ⇒ ⊢ ((((𝜒 ↔ 𝜎) ∧ (𝜃 ↔ 𝜎)) ∧ (𝜏 ↔ 𝜁)) ∧ (𝜂 ↔ 𝜁)) | ||
| Theorem | mdandyvr4 46999 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| ⊢ (𝜑 ↔ 𝜁) & ⊢ (𝜓 ↔ 𝜎) & ⊢ (𝜒 ↔ 𝜑) & ⊢ (𝜃 ↔ 𝜑) & ⊢ (𝜏 ↔ 𝜓) & ⊢ (𝜂 ↔ 𝜑) ⇒ ⊢ ((((𝜒 ↔ 𝜁) ∧ (𝜃 ↔ 𝜁)) ∧ (𝜏 ↔ 𝜎)) ∧ (𝜂 ↔ 𝜁)) | ||
| Theorem | mdandyvr5 47000 | Given the equivalences set in the hypotheses, there exist a proof where ch, th, ta, et match ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| ⊢ (𝜑 ↔ 𝜁) & ⊢ (𝜓 ↔ 𝜎) & ⊢ (𝜒 ↔ 𝜓) & ⊢ (𝜃 ↔ 𝜑) & ⊢ (𝜏 ↔ 𝜓) & ⊢ (𝜂 ↔ 𝜑) ⇒ ⊢ ((((𝜒 ↔ 𝜎) ∧ (𝜃 ↔ 𝜁)) ∧ (𝜏 ↔ 𝜎)) ∧ (𝜂 ↔ 𝜁)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |