MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.18dOLD Structured version   Visualization version   GIF version

Theorem pm2.18dOLD 130
Description: Obsolete version of pm2.18d 127 as of 17-Nov-2023. (Contributed by FL, 12-Jul-2009.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
pm2.18dOLD.1 (𝜑 → (¬ 𝜓𝜓))
Assertion
Ref Expression
pm2.18dOLD (𝜑𝜓)

Proof of Theorem pm2.18dOLD
StepHypRef Expression
1 pm2.18dOLD.1 . 2 (𝜑 → (¬ 𝜓𝜓))
2 pm2.18OLD 129 . 2 ((¬ 𝜓𝜓) → 𝜓)
31, 2syl 17 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator