MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.18i Structured version   Visualization version   GIF version

Theorem pm2.18i 131
Description: Inference associated with the Clavius law pm2.18 128. (Contributed by BJ, 30-Mar-2020.)
Hypothesis
Ref Expression
pm2.18i.1 𝜑𝜑)
Assertion
Ref Expression
pm2.18i 𝜑

Proof of Theorem pm2.18i
StepHypRef Expression
1 pm2.18i.1 . 2 𝜑𝜑)
2 pm2.18 128 . 2 ((¬ 𝜑𝜑) → 𝜑)
31, 2ax-mp 5 1 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  notnotriALT  134  pm2.61i  185  sn-00id  39984  3cubes  40107
  Copyright terms: Public domain W3C validator