| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.18d | Structured version Visualization version GIF version | ||
| Description: Deduction form of the Clavius law pm2.18 128. (Contributed by FL, 12-Jul-2009.) (Proof shortened by Andrew Salmon, 7-May-2011.) Shorten pm2.18 128. (Revised by Wolf Lammen, 17-Nov-2023.) |
| Ref | Expression |
|---|---|
| pm2.18d.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜓)) |
| Ref | Expression |
|---|---|
| pm2.18d | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | pm2.18d.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝜓)) | |
| 3 | pm2.21 123 | . . 3 ⊢ (¬ 𝜓 → (𝜓 → ¬ 𝜑)) | |
| 4 | 2, 3 | sylcom 30 | . 2 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜑)) |
| 5 | 1, 4 | mt4d 117 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm2.18 128 pm2.61d 179 pm2.18da 799 oplem1 1056 axc11n 2424 weniso 7295 infssuni 9255 ordtypelem10 9438 oismo 9451 rankval3b 9741 grur1 10733 sqeqd 15091 hausflimi 23883 minveclem4 25348 ovolunnul 25417 vitali 25530 itg2mono 25670 frgrncvvdeqlem8 30268 minvecolem4 30842 contrd 38076 fppr2odd 47716 |
| Copyright terms: Public domain | W3C validator |