Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.18d | Structured version Visualization version GIF version |
Description: Deduction form of the Clavius law pm2.18 128. (Contributed by FL, 12-Jul-2009.) (Proof shortened by Andrew Salmon, 7-May-2011.) Revised to shorten pm2.18 128. (Revised by Wolf Lammen, 17-Nov-2023.) |
Ref | Expression |
---|---|
pm2.18d.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜓)) |
Ref | Expression |
---|---|
pm2.18d | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | pm2.18d.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝜓)) | |
3 | pm2.21 123 | . . 3 ⊢ (¬ 𝜓 → (𝜓 → ¬ 𝜑)) | |
4 | 2, 3 | sylcom 30 | . 2 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜑)) |
5 | 1, 4 | mt4d 117 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.18 128 pm2.61d 179 pm2.18da 796 oplem1 1053 axc11n 2427 weniso 7218 infssuni 9071 ordtypelem10 9247 oismo 9260 rankval3b 9568 grur1 10560 sqeqd 14858 hausflimi 23112 minveclem4 24577 ovolunnul 24645 vitali 24758 itg2mono 24899 frgrncvvdeqlem8 28649 minvecolem4 29221 contrd 36234 fppr2odd 45135 |
Copyright terms: Public domain | W3C validator |