| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.18d | Structured version Visualization version GIF version | ||
| Description: Deduction form of the Clavius law pm2.18 128. (Contributed by FL, 12-Jul-2009.) (Proof shortened by Andrew Salmon, 7-May-2011.) Shorten pm2.18 128. (Revised by Wolf Lammen, 17-Nov-2023.) |
| Ref | Expression |
|---|---|
| pm2.18d.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜓)) |
| Ref | Expression |
|---|---|
| pm2.18d | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | pm2.18d.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝜓)) | |
| 3 | pm2.21 123 | . . 3 ⊢ (¬ 𝜓 → (𝜓 → ¬ 𝜑)) | |
| 4 | 2, 3 | sylcom 30 | . 2 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜑)) |
| 5 | 1, 4 | mt4d 117 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm2.18 128 pm2.61d 179 pm2.18da 799 oplem1 1056 axc11n 2428 weniso 7294 infssuni 9237 ordtypelem10 9420 oismo 9433 rankval3b 9726 grur1 10718 sqeqd 15075 hausflimi 23896 minveclem4 25360 ovolunnul 25429 vitali 25542 itg2mono 25682 frgrncvvdeqlem8 30288 minvecolem4 30862 contrd 38157 fppr2odd 47855 |
| Copyright terms: Public domain | W3C validator |