![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.18d | Structured version Visualization version GIF version |
Description: Deduction form of the Clavius law pm2.18 128. (Contributed by FL, 12-Jul-2009.) (Proof shortened by Andrew Salmon, 7-May-2011.) Revised to shorten pm2.18 128. (Revised by Wolf Lammen, 17-Nov-2023.) |
Ref | Expression |
---|---|
pm2.18d.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜓)) |
Ref | Expression |
---|---|
pm2.18d | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | pm2.18d.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝜓)) | |
3 | pm2.21 123 | . . 3 ⊢ (¬ 𝜓 → (𝜓 → ¬ 𝜑)) | |
4 | 2, 3 | sylcom 30 | . 2 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜑)) |
5 | 1, 4 | mt4d 117 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.18 128 pm2.61d 179 pm2.18da 799 oplem1 1057 axc11n 2434 weniso 7390 infssuni 9414 ordtypelem10 9596 oismo 9609 rankval3b 9895 grur1 10889 sqeqd 15215 hausflimi 24009 minveclem4 25485 ovolunnul 25554 vitali 25667 itg2mono 25808 frgrncvvdeqlem8 30338 minvecolem4 30912 contrd 38057 fppr2odd 47605 |
Copyright terms: Public domain | W3C validator |