| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.18d | Structured version Visualization version GIF version | ||
| Description: Deduction form of the Clavius law pm2.18 128. (Contributed by FL, 12-Jul-2009.) (Proof shortened by Andrew Salmon, 7-May-2011.) Shorten pm2.18 128. (Revised by Wolf Lammen, 17-Nov-2023.) |
| Ref | Expression |
|---|---|
| pm2.18d.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜓)) |
| Ref | Expression |
|---|---|
| pm2.18d | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | pm2.18d.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝜓)) | |
| 3 | pm2.21 123 | . . 3 ⊢ (¬ 𝜓 → (𝜓 → ¬ 𝜑)) | |
| 4 | 2, 3 | sylcom 30 | . 2 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜑)) |
| 5 | 1, 4 | mt4d 117 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm2.18 128 pm2.61d 179 pm2.18da 799 oplem1 1056 axc11n 2424 weniso 7329 infssuni 9297 ordtypelem10 9480 oismo 9493 rankval3b 9779 grur1 10773 sqeqd 15132 hausflimi 23867 minveclem4 25332 ovolunnul 25401 vitali 25514 itg2mono 25654 frgrncvvdeqlem8 30235 minvecolem4 30809 contrd 38091 fppr2odd 47732 |
| Copyright terms: Public domain | W3C validator |