| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.18d | Structured version Visualization version GIF version | ||
| Description: Deduction form of the Clavius law pm2.18 128. (Contributed by FL, 12-Jul-2009.) (Proof shortened by Andrew Salmon, 7-May-2011.) Shorten pm2.18 128. (Revised by Wolf Lammen, 17-Nov-2023.) |
| Ref | Expression |
|---|---|
| pm2.18d.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜓)) |
| Ref | Expression |
|---|---|
| pm2.18d | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | pm2.18d.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝜓)) | |
| 3 | pm2.21 123 | . . 3 ⊢ (¬ 𝜓 → (𝜓 → ¬ 𝜑)) | |
| 4 | 2, 3 | sylcom 30 | . 2 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜑)) |
| 5 | 1, 4 | mt4d 117 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm2.18 128 pm2.61d 179 pm2.18da 799 oplem1 1056 axc11n 2426 weniso 7288 infssuni 9230 ordtypelem10 9413 oismo 9426 rankval3b 9716 grur1 10708 sqeqd 15070 hausflimi 23893 minveclem4 25357 ovolunnul 25426 vitali 25539 itg2mono 25679 frgrncvvdeqlem8 30281 minvecolem4 30855 contrd 38136 fppr2odd 47761 |
| Copyright terms: Public domain | W3C validator |