| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.18d | Structured version Visualization version GIF version | ||
| Description: Deduction form of the Clavius law pm2.18 128. (Contributed by FL, 12-Jul-2009.) (Proof shortened by Andrew Salmon, 7-May-2011.) Shorten pm2.18 128. (Revised by Wolf Lammen, 17-Nov-2023.) |
| Ref | Expression |
|---|---|
| pm2.18d.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜓)) |
| Ref | Expression |
|---|---|
| pm2.18d | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | pm2.18d.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 → 𝜓)) | |
| 3 | pm2.21 123 | . . 3 ⊢ (¬ 𝜓 → (𝜓 → ¬ 𝜑)) | |
| 4 | 2, 3 | sylcom 30 | . 2 ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜑)) |
| 5 | 1, 4 | mt4d 117 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm2.18 128 pm2.61d 179 pm2.18da 799 oplem1 1056 axc11n 2431 weniso 7352 infssuni 9363 ordtypelem10 9546 oismo 9559 rankval3b 9845 grur1 10839 sqeqd 15190 hausflimi 23923 minveclem4 25389 ovolunnul 25458 vitali 25571 itg2mono 25711 frgrncvvdeqlem8 30292 minvecolem4 30866 contrd 38126 fppr2odd 47712 |
| Copyright terms: Public domain | W3C validator |