MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.18d Structured version   Visualization version   GIF version

Theorem pm2.18d 127
Description: Deduction form of the Clavius law pm2.18 128. (Contributed by FL, 12-Jul-2009.) (Proof shortened by Andrew Salmon, 7-May-2011.) Shorten pm2.18 128. (Revised by Wolf Lammen, 17-Nov-2023.)
Hypothesis
Ref Expression
pm2.18d.1 (𝜑 → (¬ 𝜓𝜓))
Assertion
Ref Expression
pm2.18d (𝜑𝜓)

Proof of Theorem pm2.18d
StepHypRef Expression
1 id 22 . 2 (𝜑𝜑)
2 pm2.18d.1 . . 3 (𝜑 → (¬ 𝜓𝜓))
3 pm2.21 123 . . 3 𝜓 → (𝜓 → ¬ 𝜑))
42, 3sylcom 30 . 2 (𝜑 → (¬ 𝜓 → ¬ 𝜑))
51, 4mt4d 117 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  pm2.18  128  pm2.61d  179  pm2.18da  799  oplem1  1056  axc11n  2424  weniso  7329  infssuni  9297  ordtypelem10  9480  oismo  9493  rankval3b  9779  grur1  10773  sqeqd  15132  hausflimi  23867  minveclem4  25332  ovolunnul  25401  vitali  25514  itg2mono  25654  frgrncvvdeqlem8  30235  minvecolem4  30809  contrd  38091  fppr2odd  47732
  Copyright terms: Public domain W3C validator