MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.5g Structured version   Visualization version   GIF version

Theorem pm2.5g 168
Description: General instance of Theorem *2.5 of [WhiteheadRussell] p. 107. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 9-Oct-2012.)
Assertion
Ref Expression
pm2.5g (¬ (𝜑𝜓) → (¬ 𝜑𝜒))

Proof of Theorem pm2.5g
StepHypRef Expression
1 simplim 167 . 2 (¬ (𝜑𝜓) → 𝜑)
21pm2.24d 151 1 (¬ (𝜑𝜓) → (¬ 𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  pm2.5  169  pm5.11g  941
  Copyright terms: Public domain W3C validator