Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simplim | Structured version Visualization version GIF version |
Description: Simplification. Similar to Theorem *3.26 (Simp) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 21-Jul-2012.) |
Ref | Expression |
---|---|
simplim | ⊢ (¬ (𝜑 → 𝜓) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.21 123 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
2 | 1 | con1i 147 | 1 ⊢ (¬ (𝜑 → 𝜓) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.5g 168 pm2.521g2 175 impt 178 peirce 201 biimp 214 imbi12 347 pm4.79 1001 mptbi12f 36324 ac6s6 36330 rp-fakeimass 41119 |
Copyright terms: Public domain | W3C validator |