| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.24d | Structured version Visualization version GIF version | ||
| Description: Deduction form of pm2.24 124. (Contributed by NM, 30-Jan-2006.) |
| Ref | Expression |
|---|---|
| pm2.24d.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| pm2.24d | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.24d.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
| 3 | 2 | con1d 145 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm2.5g 168 impimprbi 828 asymref2 6061 xpexr 7843 bropopvvv 8015 bropfvvvv 8017 reldmtpos 8159 zeo 12551 rpneg 12916 xrlttri 13030 difreicc 13376 pfxnd0 14588 nn0o1gt2 16284 cshwshashlem1 16999 gsumcom3fi 19884 gsumbagdiag 21861 psrass1lem 21862 cfinufil 23836 2sq2 27364 2sqnn0 27369 sltlpss 27846 sizusglecusg 29435 iswspthsnon 29827 clwlkclwwlklem2a4 29967 frgrncvvdeqlem8 30276 chirredi 32364 gsummpt2co 33018 truae 34246 bj-sngltag 36996 itg2addnclem 37690 itg2addnclem3 37692 cdleme32e 40463 dflim5 43341 ntrneiiso 44103 tz6.12-afv 47183 tz6.12-afv2 47250 odz2prm2pw 47573 lighneallem3 47617 lighneallem4b 47619 lindslinindsimp2lem5 48473 nnolog2flm1 48601 2itscp 48792 oppcmndclem 49028 |
| Copyright terms: Public domain | W3C validator |