| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.24d | Structured version Visualization version GIF version | ||
| Description: Deduction form of pm2.24 124. (Contributed by NM, 30-Jan-2006.) |
| Ref | Expression |
|---|---|
| pm2.24d.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| pm2.24d | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.24d.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
| 3 | 2 | con1d 145 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm2.5g 168 impimprbi 828 asymref2 6111 xpexr 7919 bropopvvv 8094 bropfvvvv 8096 reldmtpos 8238 zeo 12684 rpneg 13046 xrlttri 13160 difreicc 13506 pfxnd0 14711 nn0o1gt2 16405 cshwshashlem1 17120 gsumcom3fi 19965 gsumbagdiag 21896 psrass1lem 21897 cfinufil 23871 2sq2 27401 2sqnn0 27406 sltlpss 27876 sizusglecusg 29448 iswspthsnon 29843 clwlkclwwlklem2a4 29983 frgrncvvdeqlem8 30292 chirredi 32380 gsummpt2co 33047 truae 34279 bj-sngltag 37006 itg2addnclem 37700 itg2addnclem3 37702 cdleme32e 40469 dflim5 43320 ntrneiiso 44082 tz6.12-afv 47169 tz6.12-afv2 47236 odz2prm2pw 47544 lighneallem3 47588 lighneallem4b 47590 lindslinindsimp2lem5 48405 nnolog2flm1 48537 2itscp 48728 oppcmndclem 48959 |
| Copyright terms: Public domain | W3C validator |