| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.24d | Structured version Visualization version GIF version | ||
| Description: Deduction form of pm2.24 124. (Contributed by NM, 30-Jan-2006.) |
| Ref | Expression |
|---|---|
| pm2.24d.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| pm2.24d | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.24d.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
| 3 | 2 | con1d 145 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm2.5g 168 impimprbi 828 asymref2 6070 xpexr 7858 bropopvvv 8030 bropfvvvv 8032 reldmtpos 8174 zeo 12580 rpneg 12945 xrlttri 13059 difreicc 13405 pfxnd0 14613 nn0o1gt2 16310 cshwshashlem1 17025 gsumcom3fi 19876 gsumbagdiag 21856 psrass1lem 21857 cfinufil 23831 2sq2 27360 2sqnn0 27365 sltlpss 27840 sizusglecusg 29427 iswspthsnon 29819 clwlkclwwlklem2a4 29959 frgrncvvdeqlem8 30268 chirredi 32356 gsummpt2co 33014 truae 34209 bj-sngltag 36956 itg2addnclem 37650 itg2addnclem3 37652 cdleme32e 40424 dflim5 43302 ntrneiiso 44064 tz6.12-afv 47158 tz6.12-afv2 47225 odz2prm2pw 47548 lighneallem3 47592 lighneallem4b 47594 lindslinindsimp2lem5 48435 nnolog2flm1 48563 2itscp 48754 oppcmndclem 48990 |
| Copyright terms: Public domain | W3C validator |