Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.24d | Structured version Visualization version GIF version |
Description: Deduction form of pm2.24 124. (Contributed by NM, 30-Jan-2006.) |
Ref | Expression |
---|---|
pm2.24d.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
pm2.24d | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.24d.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
3 | 2 | con1d 145 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.5g 168 impimprbi 825 asymref2 6011 xpexr 7739 bropopvvv 7901 bropfvvvv 7903 reldmtpos 8021 zeo 12336 rpneg 12691 xrlttri 12802 difreicc 13145 pfxnd0 14329 nn0o1gt2 16018 cshwshashlem1 16725 gsumcom3fi 19495 gsumbagdiagOLD 21052 psrass1lemOLD 21053 gsumbagdiag 21055 psrass1lem 21056 cfinufil 22987 2sq2 26486 2sqnn0 26491 sizusglecusg 27733 iswspthsnon 28122 clwlkclwwlklem2a4 28262 frgrncvvdeqlem8 28571 chirredi 30657 gsummpt2co 31210 truae 32111 sltlpss 34014 bj-sngltag 35100 itg2addnclem 35755 itg2addnclem3 35757 cdleme32e 38386 ntrneiiso 41590 tz6.12-afv 44552 tz6.12-afv2 44619 odz2prm2pw 44903 lighneallem3 44947 lighneallem4b 44949 lindslinindsimp2lem5 45691 nnolog2flm1 45824 2itscp 46015 |
Copyright terms: Public domain | W3C validator |