| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.24d | Structured version Visualization version GIF version | ||
| Description: Deduction form of pm2.24 124. (Contributed by NM, 30-Jan-2006.) |
| Ref | Expression |
|---|---|
| pm2.24d.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| pm2.24d | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.24d.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
| 3 | 2 | con1d 145 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm2.5g 168 impimprbi 828 asymref2 6090 xpexr 7894 bropopvvv 8069 bropfvvvv 8071 reldmtpos 8213 zeo 12620 rpneg 12985 xrlttri 13099 difreicc 13445 pfxnd0 14653 nn0o1gt2 16351 cshwshashlem1 17066 gsumcom3fi 19909 gsumbagdiag 21840 psrass1lem 21841 cfinufil 23815 2sq2 27344 2sqnn0 27349 sltlpss 27819 sizusglecusg 29391 iswspthsnon 29786 clwlkclwwlklem2a4 29926 frgrncvvdeqlem8 30235 chirredi 32323 gsummpt2co 32988 truae 34233 bj-sngltag 36971 itg2addnclem 37665 itg2addnclem3 37667 cdleme32e 40439 dflim5 43318 ntrneiiso 44080 tz6.12-afv 47174 tz6.12-afv2 47241 odz2prm2pw 47564 lighneallem3 47608 lighneallem4b 47610 lindslinindsimp2lem5 48451 nnolog2flm1 48579 2itscp 48770 oppcmndclem 49006 |
| Copyright terms: Public domain | W3C validator |