![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.24d | Structured version Visualization version GIF version |
Description: Deduction form of pm2.24 124. (Contributed by NM, 30-Jan-2006.) |
Ref | Expression |
---|---|
pm2.24d.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
pm2.24d | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.24d.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
3 | 2 | con1d 145 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.5g 168 impimprbi 828 asymref2 6119 xpexr 7909 bropopvvv 8076 bropfvvvv 8078 reldmtpos 8219 zeo 12648 rpneg 13006 xrlttri 13118 difreicc 13461 pfxnd0 14638 nn0o1gt2 16324 cshwshashlem1 17029 gsumcom3fi 19847 gsumbagdiagOLD 21492 psrass1lemOLD 21493 gsumbagdiag 21495 psrass1lem 21496 cfinufil 23432 2sq2 26936 2sqnn0 26941 sltlpss 27401 sizusglecusg 28720 iswspthsnon 29110 clwlkclwwlklem2a4 29250 frgrncvvdeqlem8 29559 chirredi 31647 gsummpt2co 32200 truae 33241 bj-sngltag 35864 itg2addnclem 36539 itg2addnclem3 36541 cdleme32e 39316 dflim5 42079 ntrneiiso 42842 tz6.12-afv 45881 tz6.12-afv2 45948 odz2prm2pw 46231 lighneallem3 46275 lighneallem4b 46277 lindslinindsimp2lem5 47143 nnolog2flm1 47276 2itscp 47467 |
Copyright terms: Public domain | W3C validator |