| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.24d | Structured version Visualization version GIF version | ||
| Description: Deduction form of pm2.24 124. (Contributed by NM, 30-Jan-2006.) |
| Ref | Expression |
|---|---|
| pm2.24d.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| pm2.24d | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.24d.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
| 3 | 2 | con1d 145 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm2.5g 168 impimprbi 828 asymref2 6093 xpexr 7897 bropopvvv 8072 bropfvvvv 8074 reldmtpos 8216 zeo 12627 rpneg 12992 xrlttri 13106 difreicc 13452 pfxnd0 14660 nn0o1gt2 16358 cshwshashlem1 17073 gsumcom3fi 19916 gsumbagdiag 21847 psrass1lem 21848 cfinufil 23822 2sq2 27351 2sqnn0 27356 sltlpss 27826 sizusglecusg 29398 iswspthsnon 29793 clwlkclwwlklem2a4 29933 frgrncvvdeqlem8 30242 chirredi 32330 gsummpt2co 32995 truae 34240 bj-sngltag 36978 itg2addnclem 37672 itg2addnclem3 37674 cdleme32e 40446 dflim5 43325 ntrneiiso 44087 tz6.12-afv 47178 tz6.12-afv2 47245 odz2prm2pw 47568 lighneallem3 47612 lighneallem4b 47614 lindslinindsimp2lem5 48455 nnolog2flm1 48583 2itscp 48774 oppcmndclem 49010 |
| Copyright terms: Public domain | W3C validator |