![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.24d | Structured version Visualization version GIF version |
Description: Deduction form of pm2.24 124. (Contributed by NM, 30-Jan-2006.) |
Ref | Expression |
---|---|
pm2.24d.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
pm2.24d | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.24d.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
3 | 2 | con1d 145 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.5g 168 impimprbi 827 asymref2 6123 xpexr 7924 bropopvvv 8093 bropfvvvv 8095 reldmtpos 8238 zeo 12678 rpneg 13038 xrlttri 13150 difreicc 13493 pfxnd0 14670 nn0o1gt2 16357 cshwshashlem1 17064 gsumcom3fi 19938 gsumbagdiagOLD 21877 psrass1lemOLD 21878 gsumbagdiag 21880 psrass1lem 21881 cfinufil 23862 2sq2 27396 2sqnn0 27401 sltlpss 27863 sizusglecusg 29333 iswspthsnon 29723 clwlkclwwlklem2a4 29863 frgrncvvdeqlem8 30172 chirredi 32260 gsummpt2co 32819 truae 33932 bj-sngltag 36532 itg2addnclem 37214 itg2addnclem3 37216 cdleme32e 39987 dflim5 42823 ntrneiiso 43586 tz6.12-afv 46616 tz6.12-afv2 46683 odz2prm2pw 46966 lighneallem3 47010 lighneallem4b 47012 lindslinindsimp2lem5 47642 nnolog2flm1 47775 2itscp 47966 |
Copyright terms: Public domain | W3C validator |