Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.24d | Structured version Visualization version GIF version |
Description: Deduction form of pm2.24 124. (Contributed by NM, 30-Jan-2006.) |
Ref | Expression |
---|---|
pm2.24d.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
pm2.24d | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.24d.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
3 | 2 | con1d 145 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.5g 168 impimprbi 826 asymref2 6022 xpexr 7765 bropopvvv 7930 bropfvvvv 7932 reldmtpos 8050 zeo 12406 rpneg 12762 xrlttri 12873 difreicc 13216 pfxnd0 14401 nn0o1gt2 16090 cshwshashlem1 16797 gsumcom3fi 19580 gsumbagdiagOLD 21142 psrass1lemOLD 21143 gsumbagdiag 21145 psrass1lem 21146 cfinufil 23079 2sq2 26581 2sqnn0 26586 sizusglecusg 27830 iswspthsnon 28221 clwlkclwwlklem2a4 28361 frgrncvvdeqlem8 28670 chirredi 30756 gsummpt2co 31308 truae 32211 sltlpss 34087 bj-sngltag 35173 itg2addnclem 35828 itg2addnclem3 35830 cdleme32e 38459 ntrneiiso 41701 tz6.12-afv 44665 tz6.12-afv2 44732 odz2prm2pw 45015 lighneallem3 45059 lighneallem4b 45061 lindslinindsimp2lem5 45803 nnolog2flm1 45936 2itscp 46127 |
Copyright terms: Public domain | W3C validator |