![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.24d | Structured version Visualization version GIF version |
Description: Deduction form of pm2.24 124. (Contributed by NM, 30-Jan-2006.) |
Ref | Expression |
---|---|
pm2.24d.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
pm2.24d | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.24d.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
3 | 2 | con1d 145 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.5g 168 impimprbi 828 asymref2 6119 xpexr 7909 bropopvvv 8076 bropfvvvv 8078 reldmtpos 8219 zeo 12648 rpneg 13006 xrlttri 13118 difreicc 13461 pfxnd0 14638 nn0o1gt2 16324 cshwshashlem1 17029 gsumcom3fi 19847 gsumbagdiagOLD 21492 psrass1lemOLD 21493 gsumbagdiag 21495 psrass1lem 21496 cfinufil 23432 2sq2 26936 2sqnn0 26941 sltlpss 27402 sizusglecusg 28751 iswspthsnon 29141 clwlkclwwlklem2a4 29281 frgrncvvdeqlem8 29590 chirredi 31678 gsummpt2co 32231 truae 33272 bj-sngltag 35912 itg2addnclem 36587 itg2addnclem3 36589 cdleme32e 39364 dflim5 42127 ntrneiiso 42890 tz6.12-afv 45929 tz6.12-afv2 45996 odz2prm2pw 46279 lighneallem3 46323 lighneallem4b 46325 lindslinindsimp2lem5 47191 nnolog2flm1 47324 2itscp 47515 |
Copyright terms: Public domain | W3C validator |