Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm2.24d | Structured version Visualization version GIF version |
Description: Deduction form of pm2.24 124. (Contributed by NM, 30-Jan-2006.) |
Ref | Expression |
---|---|
pm2.24d.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
pm2.24d | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.24d.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
3 | 2 | con1d 147 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.5g 171 impimprbi 827 asymref2 5954 xpexr 7634 bropopvvv 7796 bropfvvvv 7798 reldmtpos 7916 zeo 12120 rpneg 12475 xrlttri 12586 difreicc 12929 pfxnd0 14110 nn0o1gt2 15795 cshwshashlem1 16501 gsumcom3fi 19181 gsumbagdiagOLD 20715 psrass1lemOLD 20716 gsumbagdiag 20718 psrass1lem 20719 cfinufil 22642 2sq2 26130 2sqnn0 26135 sizusglecusg 27366 iswspthsnon 27755 clwlkclwwlklem2a4 27895 frgrncvvdeqlem8 28204 chirredi 30290 gsummpt2co 30847 truae 31743 bj-sngltag 34735 itg2addnclem 35423 itg2addnclem3 35425 cdleme32e 38056 ntrneiiso 41212 tz6.12-afv 44156 tz6.12-afv2 44223 odz2prm2pw 44507 lighneallem3 44551 lighneallem4b 44553 lindslinindsimp2lem5 45295 nnolog2flm1 45428 2itscp 45619 |
Copyright terms: Public domain | W3C validator |