![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.24d | Structured version Visualization version GIF version |
Description: Deduction form of pm2.24 122. (Contributed by NM, 30-Jan-2006.) |
Ref | Expression |
---|---|
pm2.24d.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
pm2.24d | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.24d.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
3 | 2 | con1d 142 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.5 166 asymref2 5729 xpexr 7339 bropopvvv 7490 bropfvvvv 7492 reldmtpos 7596 zeo 11749 rpneg 12104 xrlttri 12215 difreicc 12554 pfxnd0 13728 nn0o1gt2 15430 cshwshashlem1 16127 gsumbagdiag 19696 psrass1lem 19697 gsumcom3fi 20528 cfinufil 22057 sizusglecusg 26705 iswspthsnon 27101 clwlkclwwlklem2a4 27282 frgrncvvdeqlem8 27647 chirredi 29770 gsummpt2co 30288 truae 30814 bj-sngltag 33455 itg2addnclem 33941 itg2addnclem3 33943 cdleme32e 36458 ntrneiiso 39159 tz6.12-afv 42015 tz6.12-afv2 42082 odz2prm2pw 42245 lighneallem3 42294 lighneallem4b 42296 lindslinindsimp2lem5 43038 nnolog2flm1 43171 |
Copyright terms: Public domain | W3C validator |