![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.24d | Structured version Visualization version GIF version |
Description: Deduction form of pm2.24 124. (Contributed by NM, 30-Jan-2006.) |
Ref | Expression |
---|---|
pm2.24d.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
pm2.24d | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.24d.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
3 | 2 | con1d 145 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.5g 168 impimprbi 828 asymref2 6149 xpexr 7958 bropopvvv 8131 bropfvvvv 8133 reldmtpos 8275 zeo 12729 rpneg 13089 xrlttri 13201 difreicc 13544 pfxnd0 14736 nn0o1gt2 16429 cshwshashlem1 17143 gsumcom3fi 20021 gsumbagdiag 21974 psrass1lem 21975 cfinufil 23957 2sq2 27495 2sqnn0 27500 sltlpss 27963 sizusglecusg 29499 iswspthsnon 29889 clwlkclwwlklem2a4 30029 frgrncvvdeqlem8 30338 chirredi 32426 gsummpt2co 33031 truae 34207 bj-sngltag 36949 itg2addnclem 37631 itg2addnclem3 37633 cdleme32e 40402 dflim5 43291 ntrneiiso 44053 tz6.12-afv 47088 tz6.12-afv2 47155 odz2prm2pw 47437 lighneallem3 47481 lighneallem4b 47483 lindslinindsimp2lem5 48191 nnolog2flm1 48324 2itscp 48515 |
Copyright terms: Public domain | W3C validator |