![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.24d | Structured version Visualization version GIF version |
Description: Deduction form of pm2.24 124. (Contributed by NM, 30-Jan-2006.) |
Ref | Expression |
---|---|
pm2.24d.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
pm2.24d | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.24d.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
3 | 2 | con1d 145 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.5g 168 impimprbi 829 asymref2 6140 xpexr 7941 bropopvvv 8114 bropfvvvv 8116 reldmtpos 8258 zeo 12702 rpneg 13065 xrlttri 13178 difreicc 13521 pfxnd0 14723 nn0o1gt2 16415 cshwshashlem1 17130 gsumcom3fi 20012 gsumbagdiag 21969 psrass1lem 21970 cfinufil 23952 2sq2 27492 2sqnn0 27497 sltlpss 27960 sizusglecusg 29496 iswspthsnon 29886 clwlkclwwlklem2a4 30026 frgrncvvdeqlem8 30335 chirredi 32423 gsummpt2co 33034 truae 34224 bj-sngltag 36966 itg2addnclem 37658 itg2addnclem3 37660 cdleme32e 40428 dflim5 43319 ntrneiiso 44081 tz6.12-afv 47123 tz6.12-afv2 47190 odz2prm2pw 47488 lighneallem3 47532 lighneallem4b 47534 lindslinindsimp2lem5 48308 nnolog2flm1 48440 2itscp 48631 |
Copyright terms: Public domain | W3C validator |