MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.24d Structured version   Visualization version   GIF version

Theorem pm2.24d 151
Description: Deduction form of pm2.24 124. (Contributed by NM, 30-Jan-2006.)
Hypothesis
Ref Expression
pm2.24d.1 (𝜑𝜓)
Assertion
Ref Expression
pm2.24d (𝜑 → (¬ 𝜓𝜒))

Proof of Theorem pm2.24d
StepHypRef Expression
1 pm2.24d.1 . . 3 (𝜑𝜓)
21a1d 25 . 2 (𝜑 → (¬ 𝜒𝜓))
32con1d 145 1 (𝜑 → (¬ 𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  pm2.5g  168  impimprbi  828  asymref2  6061  xpexr  7843  bropopvvv  8015  bropfvvvv  8017  reldmtpos  8159  zeo  12551  rpneg  12916  xrlttri  13030  difreicc  13376  pfxnd0  14588  nn0o1gt2  16284  cshwshashlem1  16999  gsumcom3fi  19884  gsumbagdiag  21861  psrass1lem  21862  cfinufil  23836  2sq2  27364  2sqnn0  27369  sltlpss  27846  sizusglecusg  29435  iswspthsnon  29827  clwlkclwwlklem2a4  29967  frgrncvvdeqlem8  30276  chirredi  32364  gsummpt2co  33018  truae  34246  bj-sngltag  36996  itg2addnclem  37690  itg2addnclem3  37692  cdleme32e  40463  dflim5  43341  ntrneiiso  44103  tz6.12-afv  47183  tz6.12-afv2  47250  odz2prm2pw  47573  lighneallem3  47617  lighneallem4b  47619  lindslinindsimp2lem5  48473  nnolog2flm1  48601  2itscp  48792  oppcmndclem  49028
  Copyright terms: Public domain W3C validator