| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm2.24d | Structured version Visualization version GIF version | ||
| Description: Deduction form of pm2.24 124. (Contributed by NM, 30-Jan-2006.) |
| Ref | Expression |
|---|---|
| pm2.24d.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| pm2.24d | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.24d.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
| 3 | 2 | con1d 145 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm2.5g 168 impimprbi 828 asymref2 6069 xpexr 7854 bropopvvv 8026 bropfvvvv 8028 reldmtpos 8170 zeo 12565 rpneg 12930 xrlttri 13044 difreicc 13390 pfxnd0 14602 nn0o1gt2 16298 cshwshashlem1 17013 gsumcom3fi 19897 gsumbagdiag 21874 psrass1lem 21875 cfinufil 23849 2sq2 27377 2sqnn0 27382 sltlpss 27859 sizusglecusg 29449 iswspthsnon 29841 clwlkclwwlklem2a4 29984 frgrncvvdeqlem8 30293 chirredi 32381 gsummpt2co 33035 truae 34263 bj-sngltag 37034 itg2addnclem 37717 itg2addnclem3 37719 cdleme32e 40550 dflim5 43427 ntrneiiso 44189 tz6.12-afv 47278 tz6.12-afv2 47345 odz2prm2pw 47668 lighneallem3 47712 lighneallem4b 47714 lindslinindsimp2lem5 48568 nnolog2flm1 48696 2itscp 48887 oppcmndclem 49123 |
| Copyright terms: Public domain | W3C validator |