![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm2.24d | Structured version Visualization version GIF version |
Description: Deduction form of pm2.24 124. (Contributed by NM, 30-Jan-2006.) |
Ref | Expression |
---|---|
pm2.24d.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
pm2.24d | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.24d.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (¬ 𝜒 → 𝜓)) |
3 | 2 | con1d 145 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.5g 168 impimprbi 828 asymref2 6117 xpexr 7920 bropopvvv 8089 bropfvvvv 8091 reldmtpos 8233 zeo 12670 rpneg 13030 xrlttri 13142 difreicc 13485 pfxnd0 14662 nn0o1gt2 16349 cshwshashlem1 17056 gsumcom3fi 19925 gsumbagdiagOLD 21860 psrass1lemOLD 21861 gsumbagdiag 21863 psrass1lem 21864 cfinufil 23819 2sq2 27353 2sqnn0 27358 sltlpss 27820 sizusglecusg 29264 iswspthsnon 29654 clwlkclwwlklem2a4 29794 frgrncvvdeqlem8 30103 chirredi 32191 gsummpt2co 32740 truae 33798 bj-sngltag 36398 itg2addnclem 37079 itg2addnclem3 37081 cdleme32e 39855 dflim5 42681 ntrneiiso 43444 tz6.12-afv 46476 tz6.12-afv2 46543 odz2prm2pw 46826 lighneallem3 46870 lighneallem4b 46872 lindslinindsimp2lem5 47453 nnolog2flm1 47586 2itscp 47777 |
Copyright terms: Public domain | W3C validator |