MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.61iOLD Structured version   Visualization version   GIF version

Theorem pm2.61iOLD 191
Description: Obsolete version of pm2.61i 185 as of 19-Nov-2023. (Contributed by NM, 5-Apr-1994.) (Proof shortened by Wolf Lammen, 12-Sep-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
pm2.61iOLD.1 (𝜑𝜓)
pm2.61iOLD.2 𝜑𝜓)
Assertion
Ref Expression
pm2.61iOLD 𝜓

Proof of Theorem pm2.61iOLD
StepHypRef Expression
1 id 22 . 2 (𝜑𝜑)
2 pm2.61iOLD.2 . . 3 𝜑𝜓)
3 pm2.61iOLD.1 . . 3 (𝜑𝜓)
42, 3ja 189 . 2 ((𝜑𝜑) → 𝜓)
51, 4ax-mp 5 1 𝜓
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator