Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ja | Structured version Visualization version GIF version |
Description: Inference joining the antecedents of two premises. For partial converses, see jarri 107 and jarli 126. (Contributed by NM, 24-Jan-1993.) (Proof shortened by Mel L. O'Cat, 19-Feb-2008.) |
Ref | Expression |
---|---|
ja.1 | ⊢ (¬ 𝜑 → 𝜒) |
ja.2 | ⊢ (𝜓 → 𝜒) |
Ref | Expression |
---|---|
ja | ⊢ ((𝜑 → 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ja.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
2 | 1 | imim2i 16 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
3 | ja.1 | . 2 ⊢ (¬ 𝜑 → 𝜒) | |
4 | 2, 3 | pm2.61d1 180 | 1 ⊢ ((𝜑 → 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: jad 187 pm2.01 188 peirce 201 oibabs 949 pm2.74 972 pm5.71 1025 meredith 1644 tbw-bijust 1701 tbw-negdf 1702 merco1 1716 19.38 1841 19.35 1880 sbi2 2299 dfmoeu 2536 moabs 2543 exmoeu 2581 moanimlem 2620 r19.21v 3113 r19.35 3271 elab3gf 3615 elab3g 3616 r19.2zb 4426 ralidmw 4438 ralidm 4442 iununi 5028 asymref2 6022 nelaneq 9358 fsuppmapnn0fiub0 13713 itgeq2 24942 frgrwopreglem4a 28674 meran1 34600 imsym1 34607 amosym1 34615 bj-ssbid2ALT 34844 wl-moteq 35673 axc5c7 36925 axc5c711 36932 rp-fakeimass 41119 nanorxor 41923 axc5c4c711 42019 pm2.43cbi 42138 euoreqb 44601 |
Copyright terms: Public domain | W3C validator |