| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ja | Structured version Visualization version GIF version | ||
| Description: Inference joining the antecedents of two premises. For partial converses, see jarri 107 and jarli 126. (Contributed by NM, 24-Jan-1993.) (Proof shortened by Mel L. O'Cat, 19-Feb-2008.) |
| Ref | Expression |
|---|---|
| ja.1 | ⊢ (¬ 𝜑 → 𝜒) |
| ja.2 | ⊢ (𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| ja | ⊢ ((𝜑 → 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ja.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 2 | 1 | imim2i 16 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
| 3 | ja.1 | . 2 ⊢ (¬ 𝜑 → 𝜒) | |
| 4 | 2, 3 | pm2.61d1 180 | 1 ⊢ ((𝜑 → 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: jad 187 pm2.01 188 peirce 202 oibabs 953 pm2.74 976 pm5.71 1029 meredith 1641 tbw-bijust 1698 tbw-negdf 1699 merco1 1713 19.38 1839 19.35 1877 sbi2 2302 dfmoeu 2530 moabs 2537 exmoeu 2575 moanimlem 2612 r19.35 3089 r19.35OLD 3090 r19.21v 3159 elab3gf 3654 elab3g 3655 dfss2 3935 r19.2zb 4462 ralidmw 4474 ralidm 4478 iununi 5066 asymref2 6093 nelaneq 9559 fsuppmapnn0fiub0 13965 itgeq2 25686 frgrwopreglem4a 30246 meran1 36406 imsym1 36413 bj-ssbid2ALT 36658 wl-moteq 37509 axc5c7 38911 axc5c711 38918 eu6w 42671 rp-fakeimass 43508 nanorxor 44301 axc5c4c711 44397 pm2.43cbi 44515 euoreqb 47114 oppcendc 49011 |
| Copyright terms: Public domain | W3C validator |