| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ja | Structured version Visualization version GIF version | ||
| Description: Inference joining the antecedents of two premises. For partial converses, see jarri 107 and jarli 126. (Contributed by NM, 24-Jan-1993.) (Proof shortened by Mel L. O'Cat, 19-Feb-2008.) |
| Ref | Expression |
|---|---|
| ja.1 | ⊢ (¬ 𝜑 → 𝜒) |
| ja.2 | ⊢ (𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| ja | ⊢ ((𝜑 → 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ja.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 2 | 1 | imim2i 16 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
| 3 | ja.1 | . 2 ⊢ (¬ 𝜑 → 𝜒) | |
| 4 | 2, 3 | pm2.61d1 180 | 1 ⊢ ((𝜑 → 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: jad 187 pm2.01 188 peirce 202 oibabs 953 pm2.74 976 pm5.71 1029 meredith 1641 tbw-bijust 1698 tbw-negdf 1699 merco1 1713 19.38 1839 19.35 1877 sbi2 2302 dfmoeu 2535 moabs 2542 exmoeu 2580 moanimlem 2617 r19.35 3095 r19.35OLD 3096 r19.21v 3165 elab3gf 3663 elab3g 3664 dfss2 3944 r19.2zb 4471 ralidmw 4483 ralidm 4487 iununi 5075 asymref2 6106 nelaneq 9613 fsuppmapnn0fiub0 14011 itgeq2 25731 frgrwopreglem4a 30291 meran1 36429 imsym1 36436 bj-ssbid2ALT 36681 wl-moteq 37532 axc5c7 38929 axc5c711 38936 eu6w 42699 rp-fakeimass 43536 nanorxor 44329 axc5c4c711 44425 pm2.43cbi 44543 euoreqb 47138 oppcendc 48993 |
| Copyright terms: Public domain | W3C validator |