| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ja | Structured version Visualization version GIF version | ||
| Description: Inference joining the antecedents of two premises. For partial converses, see jarri 107 and jarli 126. (Contributed by NM, 24-Jan-1993.) (Proof shortened by Mel L. O'Cat, 19-Feb-2008.) |
| Ref | Expression |
|---|---|
| ja.1 | ⊢ (¬ 𝜑 → 𝜒) |
| ja.2 | ⊢ (𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| ja | ⊢ ((𝜑 → 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ja.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 2 | 1 | imim2i 16 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
| 3 | ja.1 | . 2 ⊢ (¬ 𝜑 → 𝜒) | |
| 4 | 2, 3 | pm2.61d1 180 | 1 ⊢ ((𝜑 → 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: jad 187 pm2.01 188 peirce 202 oibabs 953 pm2.74 976 pm5.71 1029 meredith 1641 tbw-bijust 1698 tbw-negdf 1699 merco1 1713 19.38 1839 19.35 1877 sbi2 2302 dfmoeu 2529 moabs 2536 exmoeu 2574 moanimlem 2611 r19.35 3087 r19.21v 3154 elab3gf 3640 elab3g 3641 dfss2 3921 r19.2zb 4447 ralidmw 4459 ralidm 4463 iununi 5048 asymref2 6066 nelaneqOLD 9494 fsuppmapnn0fiub0 13900 itgeq2 25677 frgrwopreglem4a 30254 meran1 36385 imsym1 36392 bj-ssbid2ALT 36637 wl-moteq 37488 axc5c7 38890 axc5c711 38897 eu6w 42649 rp-fakeimass 43485 nanorxor 44278 axc5c4c711 44374 pm2.43cbi 44492 euoreqb 47093 oppcendc 49003 |
| Copyright terms: Public domain | W3C validator |