| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ja | Structured version Visualization version GIF version | ||
| Description: Inference joining the antecedents of two premises. For partial converses, see jarri 107 and jarli 126. (Contributed by NM, 24-Jan-1993.) (Proof shortened by Mel L. O'Cat, 19-Feb-2008.) |
| Ref | Expression |
|---|---|
| ja.1 | ⊢ (¬ 𝜑 → 𝜒) |
| ja.2 | ⊢ (𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| ja | ⊢ ((𝜑 → 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ja.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 2 | 1 | imim2i 16 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
| 3 | ja.1 | . 2 ⊢ (¬ 𝜑 → 𝜒) | |
| 4 | 2, 3 | pm2.61d1 180 | 1 ⊢ ((𝜑 → 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: jad 187 pm2.01 188 peirce 202 oibabs 953 pm2.74 976 pm5.71 1029 meredith 1641 tbw-bijust 1698 tbw-negdf 1699 merco1 1713 19.38 1839 19.35 1877 sbi2 2302 dfmoeu 2529 moabs 2536 exmoeu 2574 moanimlem 2611 r19.35 3088 r19.35OLD 3089 r19.21v 3158 elab3gf 3648 elab3g 3649 dfss2 3929 r19.2zb 4455 ralidmw 4467 ralidm 4471 iununi 5058 asymref2 6078 nelaneq 9528 fsuppmapnn0fiub0 13934 itgeq2 25712 frgrwopreglem4a 30289 meran1 36392 imsym1 36399 bj-ssbid2ALT 36644 wl-moteq 37495 axc5c7 38897 axc5c711 38904 eu6w 42657 rp-fakeimass 43494 nanorxor 44287 axc5c4c711 44383 pm2.43cbi 44501 euoreqb 47103 oppcendc 49000 |
| Copyright terms: Public domain | W3C validator |