| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ja | Structured version Visualization version GIF version | ||
| Description: Inference joining the antecedents of two premises. For partial converses, see jarri 107 and jarli 126. (Contributed by NM, 24-Jan-1993.) (Proof shortened by Mel L. O'Cat, 19-Feb-2008.) |
| Ref | Expression |
|---|---|
| ja.1 | ⊢ (¬ 𝜑 → 𝜒) |
| ja.2 | ⊢ (𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| ja | ⊢ ((𝜑 → 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ja.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 2 | 1 | imim2i 16 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
| 3 | ja.1 | . 2 ⊢ (¬ 𝜑 → 𝜒) | |
| 4 | 2, 3 | pm2.61d1 180 | 1 ⊢ ((𝜑 → 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: jad 187 pm2.01 188 peirce 202 oibabs 953 pm2.74 976 pm5.71 1029 meredith 1642 tbw-bijust 1699 tbw-negdf 1700 merco1 1714 19.38 1840 19.35 1878 sbi2 2304 dfmoeu 2531 moabs 2538 exmoeu 2576 moanimlem 2613 r19.35 3090 r19.21v 3157 elab3gf 3635 elab3g 3636 dfss2 3915 r19.2zb 4443 ralidmw 4455 ralidm 4459 iununi 5045 asymref2 6063 nelaneqOLD 9488 fsuppmapnn0fiub0 13900 itgeq2 25706 frgrwopreglem4a 30290 meran1 36453 imsym1 36460 bj-ssbid2ALT 36705 wl-moteq 37556 axc5c7 38958 axc5c711 38965 eu6w 42717 rp-fakeimass 43553 nanorxor 44346 axc5c4c711 44442 pm2.43cbi 44559 euoreqb 47148 oppcendc 49058 |
| Copyright terms: Public domain | W3C validator |