![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ja | Structured version Visualization version GIF version |
Description: Inference joining the antecedents of two premises. For partial converses, see jarri 107 and jarli 126. (Contributed by NM, 24-Jan-1993.) (Proof shortened by Mel L. O'Cat, 19-Feb-2008.) |
Ref | Expression |
---|---|
ja.1 | ⊢ (¬ 𝜑 → 𝜒) |
ja.2 | ⊢ (𝜓 → 𝜒) |
Ref | Expression |
---|---|
ja | ⊢ ((𝜑 → 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ja.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
2 | 1 | imim2i 16 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
3 | ja.1 | . 2 ⊢ (¬ 𝜑 → 𝜒) | |
4 | 2, 3 | pm2.61d1 180 | 1 ⊢ ((𝜑 → 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: jad 187 pm2.01 188 peirce 202 oibabs 952 pm2.74 975 pm5.71 1028 meredith 1639 tbw-bijust 1696 tbw-negdf 1697 merco1 1711 19.38 1837 19.35 1876 sbi2 2306 dfmoeu 2539 moabs 2546 exmoeu 2584 moanimlem 2621 r19.35 3114 r19.35OLD 3115 r19.21v 3186 elab3gf 3700 elab3g 3701 dfss2 3994 r19.2zb 4519 ralidmw 4531 ralidm 4535 iununi 5122 asymref2 6149 nelaneq 9668 fsuppmapnn0fiub0 14044 itgeq2 25833 frgrwopreglem4a 30342 meran1 36377 imsym1 36384 bj-ssbid2ALT 36629 wl-moteq 37468 axc5c7 38867 axc5c711 38874 eu6w 42631 rp-fakeimass 43474 nanorxor 44274 axc5c4c711 44370 pm2.43cbi 44489 euoreqb 47024 |
Copyright terms: Public domain | W3C validator |