| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ja | Structured version Visualization version GIF version | ||
| Description: Inference joining the antecedents of two premises. For partial converses, see jarri 107 and jarli 126. (Contributed by NM, 24-Jan-1993.) (Proof shortened by Mel L. O'Cat, 19-Feb-2008.) |
| Ref | Expression |
|---|---|
| ja.1 | ⊢ (¬ 𝜑 → 𝜒) |
| ja.2 | ⊢ (𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| ja | ⊢ ((𝜑 → 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ja.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 2 | 1 | imim2i 16 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
| 3 | ja.1 | . 2 ⊢ (¬ 𝜑 → 𝜒) | |
| 4 | 2, 3 | pm2.61d1 180 | 1 ⊢ ((𝜑 → 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: jad 187 pm2.01 188 peirce 202 oibabs 953 pm2.74 976 pm5.71 1029 meredith 1641 tbw-bijust 1698 tbw-negdf 1699 merco1 1713 19.38 1839 19.35 1877 sbi2 2302 dfmoeu 2529 moabs 2536 exmoeu 2574 moanimlem 2611 r19.35 3088 r19.35OLD 3089 r19.21v 3158 elab3gf 3651 elab3g 3652 dfss2 3932 r19.2zb 4459 ralidmw 4471 ralidm 4475 iununi 5063 asymref2 6090 nelaneq 9552 fsuppmapnn0fiub0 13958 itgeq2 25679 frgrwopreglem4a 30239 meran1 36399 imsym1 36406 bj-ssbid2ALT 36651 wl-moteq 37502 axc5c7 38904 axc5c711 38911 eu6w 42664 rp-fakeimass 43501 nanorxor 44294 axc5c4c711 44390 pm2.43cbi 44508 euoreqb 47110 oppcendc 49007 |
| Copyright terms: Public domain | W3C validator |