![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ja | Structured version Visualization version GIF version |
Description: Inference joining the antecedents of two premises. For partial converses, see jarri 107 and jarli 126. (Contributed by NM, 24-Jan-1993.) (Proof shortened by Mel L. O'Cat, 19-Feb-2008.) |
Ref | Expression |
---|---|
ja.1 | ⊢ (¬ 𝜑 → 𝜒) |
ja.2 | ⊢ (𝜓 → 𝜒) |
Ref | Expression |
---|---|
ja | ⊢ ((𝜑 → 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ja.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
2 | 1 | imim2i 16 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
3 | ja.1 | . 2 ⊢ (¬ 𝜑 → 𝜒) | |
4 | 2, 3 | pm2.61d1 180 | 1 ⊢ ((𝜑 → 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: jad 187 pm2.01 188 peirce 202 oibabs 953 pm2.74 976 pm5.71 1029 meredith 1638 tbw-bijust 1695 tbw-negdf 1696 merco1 1710 19.38 1836 19.35 1875 sbi2 2301 dfmoeu 2534 moabs 2541 exmoeu 2579 moanimlem 2616 r19.35 3106 r19.35OLD 3107 r19.21v 3178 elab3gf 3687 elab3g 3688 dfss2 3981 r19.2zb 4502 ralidmw 4514 ralidm 4518 iununi 5104 asymref2 6140 nelaneq 9637 fsuppmapnn0fiub0 14031 itgeq2 25828 frgrwopreglem4a 30339 meran1 36394 imsym1 36401 bj-ssbid2ALT 36646 wl-moteq 37495 axc5c7 38893 axc5c711 38900 eu6w 42663 rp-fakeimass 43502 nanorxor 44301 axc5c4c711 44397 pm2.43cbi 44516 euoreqb 47059 |
Copyright terms: Public domain | W3C validator |