| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ja | Structured version Visualization version GIF version | ||
| Description: Inference joining the antecedents of two premises. For partial converses, see jarri 107 and jarli 126. (Contributed by NM, 24-Jan-1993.) (Proof shortened by Mel L. O'Cat, 19-Feb-2008.) |
| Ref | Expression |
|---|---|
| ja.1 | ⊢ (¬ 𝜑 → 𝜒) |
| ja.2 | ⊢ (𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| ja | ⊢ ((𝜑 → 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ja.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
| 2 | 1 | imim2i 16 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
| 3 | ja.1 | . 2 ⊢ (¬ 𝜑 → 𝜒) | |
| 4 | 2, 3 | pm2.61d1 180 | 1 ⊢ ((𝜑 → 𝜓) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: jad 187 pm2.01 188 peirce 202 oibabs 953 pm2.74 976 pm5.71 1029 meredith 1641 tbw-bijust 1698 tbw-negdf 1699 merco1 1713 19.38 1839 19.35 1877 sbi2 2302 dfmoeu 2535 moabs 2542 exmoeu 2580 moanimlem 2617 r19.35 3095 r19.35OLD 3096 r19.21v 3165 elab3gf 3663 elab3g 3664 dfss2 3944 r19.2zb 4471 ralidmw 4483 ralidm 4487 iununi 5075 asymref2 6106 nelaneq 9611 fsuppmapnn0fiub0 14009 itgeq2 25729 frgrwopreglem4a 30237 meran1 36375 imsym1 36382 bj-ssbid2ALT 36627 wl-moteq 37478 axc5c7 38875 axc5c711 38882 eu6w 42646 rp-fakeimass 43483 nanorxor 44277 axc5c4c711 44373 pm2.43cbi 44491 euoreqb 47086 oppcendc 48941 |
| Copyright terms: Public domain | W3C validator |