![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ja | Structured version Visualization version GIF version |
Description: Inference joining the antecedents of two premises. For partial converses, see jarri 107 and jarli 126. (Contributed by NM, 24-Jan-1993.) (Proof shortened by Mel L. O'Cat, 19-Feb-2008.) |
Ref | Expression |
---|---|
ja.1 | ⊢ (¬ 𝜑 → 𝜒) |
ja.2 | ⊢ (𝜓 → 𝜒) |
Ref | Expression |
---|---|
ja | ⊢ ((𝜑 → 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ja.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
2 | 1 | imim2i 16 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
3 | ja.1 | . 2 ⊢ (¬ 𝜑 → 𝜒) | |
4 | 2, 3 | pm2.61d1 180 | 1 ⊢ ((𝜑 → 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: jad 187 pm2.01 188 peirce 201 oibabs 951 pm2.74 974 pm5.71 1027 meredith 1644 tbw-bijust 1701 tbw-negdf 1702 merco1 1716 19.38 1842 19.35 1881 sbi2 2299 dfmoeu 2531 moabs 2538 exmoeu 2576 moanimlem 2615 r19.35 3109 r19.35OLD 3110 r19.21v 3180 elab3gf 3675 elab3g 3676 r19.2zb 4496 ralidmw 4508 ralidm 4512 iununi 5103 asymref2 6119 nelaneq 9594 fsuppmapnn0fiub0 13958 itgeq2 25295 frgrwopreglem4a 29563 meran1 35296 imsym1 35303 bj-ssbid2ALT 35540 wl-moteq 36383 axc5c7 37781 axc5c711 37788 rp-fakeimass 42263 nanorxor 43064 axc5c4c711 43160 pm2.43cbi 43279 euoreqb 45817 |
Copyright terms: Public domain | W3C validator |