Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ja | Structured version Visualization version GIF version |
Description: Inference joining the antecedents of two premises. For partial converses, see jarri 107 and jarli 126. (Contributed by NM, 24-Jan-1993.) (Proof shortened by Mel L. O'Cat, 19-Feb-2008.) |
Ref | Expression |
---|---|
ja.1 | ⊢ (¬ 𝜑 → 𝜒) |
ja.2 | ⊢ (𝜓 → 𝜒) |
Ref | Expression |
---|---|
ja | ⊢ ((𝜑 → 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ja.2 | . . 3 ⊢ (𝜓 → 𝜒) | |
2 | 1 | imim2i 16 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜒)) |
3 | ja.1 | . 2 ⊢ (¬ 𝜑 → 𝜒) | |
4 | 2, 3 | pm2.61d1 180 | 1 ⊢ ((𝜑 → 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: jad 187 pm2.01 188 peirce 201 oibabs 948 pm2.74 971 pm5.71 1024 meredith 1645 tbw-bijust 1702 tbw-negdf 1703 merco1 1717 19.38 1842 19.35 1881 sbi2 2302 dfmoeu 2536 moabs 2543 exmoeu 2581 moanimlem 2620 r19.35 3268 elab3gf 3608 elab3g 3609 r19.2zb 4423 ralidmw 4435 ralidm 4439 iununi 5024 asymref2 6011 nelaneq 9288 fsuppmapnn0fiub0 13641 itgeq2 24847 frgrwopreglem4a 28575 meran1 34527 imsym1 34534 amosym1 34542 bj-ssbid2ALT 34771 wl-moteq 35600 axc5c7 36852 axc5c711 36859 rp-fakeimass 41017 nanorxor 41812 axc5c4c711 41908 pm2.43cbi 42027 euoreqb 44488 |
Copyright terms: Public domain | W3C validator |