| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > jad | Structured version Visualization version GIF version | ||
| Description: Deduction form of ja 186. (Contributed by Scott Fenton, 13-Dec-2010.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| jad.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜃)) |
| jad.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| jad | ⊢ (𝜑 → ((𝜓 → 𝜒) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jad.1 | . . . 4 ⊢ (𝜑 → (¬ 𝜓 → 𝜃)) | |
| 2 | 1 | com12 32 | . . 3 ⊢ (¬ 𝜓 → (𝜑 → 𝜃)) |
| 3 | jad.2 | . . . 4 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
| 4 | 3 | com12 32 | . . 3 ⊢ (𝜒 → (𝜑 → 𝜃)) |
| 5 | 2, 4 | ja 186 | . 2 ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜃)) |
| 6 | 5 | com12 32 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: pm2.6 191 pm2.65 193 merco2 1736 wereu2 5682 frpomin 6361 isfin7-2 10436 axpowndlem3 10639 suppssfz 14035 lo1bdd2 15560 pntlem3 27653 hbimtg 35807 arg-ax 36417 onsuct0 36442 ordcmp 36448 poimirlem26 37653 ax12indi 38945 ntrneiiso 44104 hbimpg 44574 |
| Copyright terms: Public domain | W3C validator |