Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > jad | Structured version Visualization version GIF version |
Description: Deduction form of ja 186. (Contributed by Scott Fenton, 13-Dec-2010.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
jad.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜃)) |
jad.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
jad | ⊢ (𝜑 → ((𝜓 → 𝜒) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jad.1 | . . . 4 ⊢ (𝜑 → (¬ 𝜓 → 𝜃)) | |
2 | 1 | com12 32 | . . 3 ⊢ (¬ 𝜓 → (𝜑 → 𝜃)) |
3 | jad.2 | . . . 4 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
4 | 3 | com12 32 | . . 3 ⊢ (𝜒 → (𝜑 → 𝜃)) |
5 | 2, 4 | ja 186 | . 2 ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜃)) |
6 | 5 | com12 32 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.6 190 pm2.65 192 merco2 1740 wereu2 5577 frpomin 6228 isfin7-2 10083 axpowndlem3 10286 suppssfz 13642 lo1bdd2 15161 pntlem3 26662 hbimtg 33688 arg-ax 34532 onsuct0 34557 ordcmp 34563 poimirlem26 35730 ax12indi 36885 ntrneiiso 41590 hbimpg 42063 |
Copyright terms: Public domain | W3C validator |