Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > jad | Structured version Visualization version GIF version |
Description: Deduction form of ja 186. (Contributed by Scott Fenton, 13-Dec-2010.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
jad.1 | ⊢ (𝜑 → (¬ 𝜓 → 𝜃)) |
jad.2 | ⊢ (𝜑 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
jad | ⊢ (𝜑 → ((𝜓 → 𝜒) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jad.1 | . . . 4 ⊢ (𝜑 → (¬ 𝜓 → 𝜃)) | |
2 | 1 | com12 32 | . . 3 ⊢ (¬ 𝜓 → (𝜑 → 𝜃)) |
3 | jad.2 | . . . 4 ⊢ (𝜑 → (𝜒 → 𝜃)) | |
4 | 3 | com12 32 | . . 3 ⊢ (𝜒 → (𝜑 → 𝜃)) |
5 | 2, 4 | ja 186 | . 2 ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜃)) |
6 | 5 | com12 32 | 1 ⊢ (𝜑 → ((𝜓 → 𝜒) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.6 190 pm2.65 192 merco2 1739 wereu2 5586 frpomin 6243 isfin7-2 10152 axpowndlem3 10355 suppssfz 13714 lo1bdd2 15233 pntlem3 26757 hbimtg 33782 arg-ax 34605 onsuct0 34630 ordcmp 34636 poimirlem26 35803 ax12indi 36958 ntrneiiso 41701 hbimpg 42174 |
Copyright terms: Public domain | W3C validator |