MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.67 Structured version   Visualization version   GIF version

Theorem pm4.67 399
Description: Theorem *4.67 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.67 (¬ (¬ 𝜑 → ¬ 𝜓) ↔ (¬ 𝜑𝜓))

Proof of Theorem pm4.67
StepHypRef Expression
1 pm4.63 398 1 (¬ (¬ 𝜑 → ¬ 𝜓) ↔ (¬ 𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator