![]() |
Metamath
Proof Explorer Theorem List (p. 4 of 443) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28468) |
![]() (28469-29993) |
![]() (29994-44273) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | 3bitr3d 301 | Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 24-Apr-1996.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → (𝜓 ↔ 𝜃)) & ⊢ (𝜑 → (𝜒 ↔ 𝜏)) ⇒ ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | ||
Theorem | 3bitr3rd 302 | Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → (𝜓 ↔ 𝜃)) & ⊢ (𝜑 → (𝜒 ↔ 𝜏)) ⇒ ⊢ (𝜑 → (𝜏 ↔ 𝜃)) | ||
Theorem | 3bitr4d 303 | Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 18-Oct-1995.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → (𝜃 ↔ 𝜓)) & ⊢ (𝜑 → (𝜏 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | ||
Theorem | 3bitr4rd 304 | Deduction from transitivity of biconditional. (Contributed by NM, 4-Aug-2006.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → (𝜃 ↔ 𝜓)) & ⊢ (𝜑 → (𝜏 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (𝜏 ↔ 𝜃)) | ||
Theorem | 3bitr3g 305 | More general version of 3bitr3i 293. Useful for converting definitions in a formula. (Contributed by NM, 4-Jun-1995.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜓 ↔ 𝜃) & ⊢ (𝜒 ↔ 𝜏) ⇒ ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | ||
Theorem | 3bitr4g 306 | More general version of 3bitr4i 295. Useful for converting definitions in a formula. (Contributed by NM, 11-May-1993.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜃 ↔ 𝜓) & ⊢ (𝜏 ↔ 𝜒) ⇒ ⊢ (𝜑 → (𝜃 ↔ 𝜏)) | ||
Theorem | notnotb 307 | Double negation. Theorem *4.13 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-1993.) |
⊢ (𝜑 ↔ ¬ ¬ 𝜑) | ||
Theorem | con34b 308 | A biconditional form of contraposition. Theorem *4.1 of [WhiteheadRussell] p. 116. (Contributed by NM, 11-May-1993.) |
⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜓 → ¬ 𝜑)) | ||
Theorem | con4bid 309 | A contraposition deduction. (Contributed by NM, 21-May-1994.) |
⊢ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) ⇒ ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | ||
Theorem | notbid 310 | Deduction negating both sides of a logical equivalence. (Contributed by NM, 21-May-1994.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (¬ 𝜓 ↔ ¬ 𝜒)) | ||
Theorem | notbi 311 | Contraposition. Theorem *4.11 of [WhiteheadRussell] p. 117. (Contributed by NM, 21-May-1994.) (Proof shortened by Wolf Lammen, 12-Jun-2013.) |
⊢ ((𝜑 ↔ 𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓)) | ||
Theorem | notbii 312 | Negate both sides of a logical equivalence. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (¬ 𝜑 ↔ ¬ 𝜓) | ||
Theorem | con4bii 313 | A contraposition inference. (Contributed by NM, 21-May-1994.) |
⊢ (¬ 𝜑 ↔ ¬ 𝜓) ⇒ ⊢ (𝜑 ↔ 𝜓) | ||
Theorem | mtbi 314 | An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
⊢ ¬ 𝜑 & ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ¬ 𝜓 | ||
Theorem | mtbir 315 | An inference from a biconditional, related to modus tollens. (Contributed by NM, 15-Nov-1994.) (Proof shortened by Wolf Lammen, 14-Oct-2012.) |
⊢ ¬ 𝜓 & ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ¬ 𝜑 | ||
Theorem | mtbid 316 | A deduction from a biconditional, similar to modus tollens. (Contributed by NM, 26-Nov-1995.) |
⊢ (𝜑 → ¬ 𝜓) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ¬ 𝜒) | ||
Theorem | mtbird 317 | A deduction from a biconditional, similar to modus tollens. (Contributed by NM, 10-May-1994.) |
⊢ (𝜑 → ¬ 𝜒) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ¬ 𝜓) | ||
Theorem | mtbii 318 | An inference from a biconditional, similar to modus tollens. (Contributed by NM, 27-Nov-1995.) |
⊢ ¬ 𝜓 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ¬ 𝜒) | ||
Theorem | mtbiri 319 | An inference from a biconditional, similar to modus tollens. (Contributed by NM, 24-Aug-1995.) |
⊢ ¬ 𝜒 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ¬ 𝜓) | ||
Theorem | sylnib 320 | A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013.) |
⊢ (𝜑 → ¬ 𝜓) & ⊢ (𝜓 ↔ 𝜒) ⇒ ⊢ (𝜑 → ¬ 𝜒) | ||
Theorem | sylnibr 321 | A mixed syllogism inference from an implication and a biconditional. Useful for substituting a consequent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.) |
⊢ (𝜑 → ¬ 𝜓) & ⊢ (𝜒 ↔ 𝜓) ⇒ ⊢ (𝜑 → ¬ 𝜒) | ||
Theorem | sylnbi 322 | A mixed syllogism inference from a biconditional and an implication. Useful for substituting an antecedent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013.) |
⊢ (𝜑 ↔ 𝜓) & ⊢ (¬ 𝜓 → 𝜒) ⇒ ⊢ (¬ 𝜑 → 𝜒) | ||
Theorem | sylnbir 323 | A mixed syllogism inference from a biconditional and an implication. (Contributed by Wolf Lammen, 16-Dec-2013.) |
⊢ (𝜓 ↔ 𝜑) & ⊢ (¬ 𝜓 → 𝜒) ⇒ ⊢ (¬ 𝜑 → 𝜒) | ||
Theorem | xchnxbi 324 | Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
⊢ (¬ 𝜑 ↔ 𝜓) & ⊢ (𝜑 ↔ 𝜒) ⇒ ⊢ (¬ 𝜒 ↔ 𝜓) | ||
Theorem | xchnxbir 325 | Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
⊢ (¬ 𝜑 ↔ 𝜓) & ⊢ (𝜒 ↔ 𝜑) ⇒ ⊢ (¬ 𝜒 ↔ 𝜓) | ||
Theorem | xchbinx 326 | Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
⊢ (𝜑 ↔ ¬ 𝜓) & ⊢ (𝜓 ↔ 𝜒) ⇒ ⊢ (𝜑 ↔ ¬ 𝜒) | ||
Theorem | xchbinxr 327 | Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
⊢ (𝜑 ↔ ¬ 𝜓) & ⊢ (𝜒 ↔ 𝜓) ⇒ ⊢ (𝜑 ↔ ¬ 𝜒) | ||
Theorem | imbi2i 328 | Introduce an antecedent to both sides of a logical equivalence. This and the next three rules are useful for building up wff's around a definition, in order to make use of the definition. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 6-Feb-2013.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓)) | ||
Theorem | jcn 329 | Inference joining the consequents of two premises. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → ¬ 𝜒) ⇒ ⊢ (𝜑 → ¬ (𝜓 → 𝜒)) | ||
Theorem | bibi2i 330 | Inference adding a biconditional to the left in an equivalence. (Contributed by NM, 26-May-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 16-May-2013.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓)) | ||
Theorem | bibi1i 331 | Inference adding a biconditional to the right in an equivalence. (Contributed by NM, 26-May-1993.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒)) | ||
Theorem | bibi12i 332 | The equivalence of two equivalences. (Contributed by NM, 26-May-1993.) |
⊢ (𝜑 ↔ 𝜓) & ⊢ (𝜒 ↔ 𝜃) ⇒ ⊢ ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜃)) | ||
Theorem | imbi2d 333 | Deduction adding an antecedent to both sides of a logical equivalence. (Contributed by NM, 11-May-1993.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ((𝜃 → 𝜓) ↔ (𝜃 → 𝜒))) | ||
Theorem | imbi1d 334 | Deduction adding a consequent to both sides of a logical equivalence. (Contributed by NM, 11-May-1993.) (Proof shortened by Wolf Lammen, 17-Sep-2013.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ((𝜓 → 𝜃) ↔ (𝜒 → 𝜃))) | ||
Theorem | bibi2d 335 | Deduction adding a biconditional to the left in an equivalence. (Contributed by NM, 11-May-1993.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ((𝜃 ↔ 𝜓) ↔ (𝜃 ↔ 𝜒))) | ||
Theorem | bibi1d 336 | Deduction adding a biconditional to the right in an equivalence. (Contributed by NM, 11-May-1993.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜃))) | ||
Theorem | imbi12d 337 | Deduction joining two equivalences to form equivalence of implications. (Contributed by NM, 16-May-1993.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → (𝜃 ↔ 𝜏)) ⇒ ⊢ (𝜑 → ((𝜓 → 𝜃) ↔ (𝜒 → 𝜏))) | ||
Theorem | bibi12d 338 | Deduction joining two equivalences to form equivalence of biconditionals. (Contributed by NM, 26-May-1993.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → (𝜃 ↔ 𝜏)) ⇒ ⊢ (𝜑 → ((𝜓 ↔ 𝜃) ↔ (𝜒 ↔ 𝜏))) | ||
Theorem | imbi12 339 | Closed form of imbi12i 343. Was automatically derived from its "Virtual Deduction" version and the Metamath program "MM-PA> MINIMIZE_WITH *" command. (Contributed by Alan Sare, 18-Mar-2012.) |
⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ↔ 𝜃) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)))) | ||
Theorem | imbi1 340 | Theorem *4.84 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) |
⊢ ((𝜑 ↔ 𝜓) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒))) | ||
Theorem | imbi2 341 | Theorem *4.85 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
⊢ ((𝜑 ↔ 𝜓) → ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓))) | ||
Theorem | imbi1i 342 | Introduce a consequent to both sides of a logical equivalence. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 17-Sep-2013.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜒)) | ||
Theorem | imbi12i 343 | Join two logical equivalences to form equivalence of implications. (Contributed by NM, 1-Aug-1993.) |
⊢ (𝜑 ↔ 𝜓) & ⊢ (𝜒 ↔ 𝜃) ⇒ ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) | ||
Theorem | bibi1 344 | Theorem *4.86 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) |
⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒))) | ||
Theorem | bitr3 345 | Closed nested implication form of bitr3i 269. Derived automatically from bitr3VD 40602. (Contributed by Alan Sare, 31-Dec-2011.) |
⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ↔ 𝜒) → (𝜓 ↔ 𝜒))) | ||
Theorem | con2bi 346 | Contraposition. Theorem *4.12 of [WhiteheadRussell] p. 117. (Contributed by NM, 15-Apr-1995.) (Proof shortened by Wolf Lammen, 3-Jan-2013.) |
⊢ ((𝜑 ↔ ¬ 𝜓) ↔ (𝜓 ↔ ¬ 𝜑)) | ||
Theorem | con2bid 347 | A contraposition deduction. (Contributed by NM, 15-Apr-1995.) |
⊢ (𝜑 → (𝜓 ↔ ¬ 𝜒)) ⇒ ⊢ (𝜑 → (𝜒 ↔ ¬ 𝜓)) | ||
Theorem | con1bid 348 | A contraposition deduction. (Contributed by NM, 9-Oct-1999.) |
⊢ (𝜑 → (¬ 𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (¬ 𝜒 ↔ 𝜓)) | ||
Theorem | con1bii 349 | A contraposition inference. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 13-Oct-2012.) |
⊢ (¬ 𝜑 ↔ 𝜓) ⇒ ⊢ (¬ 𝜓 ↔ 𝜑) | ||
Theorem | con2bii 350 | A contraposition inference. (Contributed by NM, 12-Mar-1993.) |
⊢ (𝜑 ↔ ¬ 𝜓) ⇒ ⊢ (𝜓 ↔ ¬ 𝜑) | ||
Theorem | con1b 351 | Contraposition. Bidirectional version of con1 146. (Contributed by NM, 3-Jan-1993.) |
⊢ ((¬ 𝜑 → 𝜓) ↔ (¬ 𝜓 → 𝜑)) | ||
Theorem | con2b 352 | Contraposition. Bidirectional version of con2 133. (Contributed by NM, 12-Mar-1993.) |
⊢ ((𝜑 → ¬ 𝜓) ↔ (𝜓 → ¬ 𝜑)) | ||
Theorem | biimt 353 | A wff is equivalent to itself with true antecedent. (Contributed by NM, 28-Jan-1996.) |
⊢ (𝜑 → (𝜓 ↔ (𝜑 → 𝜓))) | ||
Theorem | pm5.5 354 | Theorem *5.5 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) |
⊢ (𝜑 → ((𝜑 → 𝜓) ↔ 𝜓)) | ||
Theorem | a1bi 355 | Inference introducing a theorem as an antecedent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 11-Nov-2012.) |
⊢ 𝜑 ⇒ ⊢ (𝜓 ↔ (𝜑 → 𝜓)) | ||
Theorem | mt2bi 356 | A false consequent falsifies an antecedent. (Contributed by NM, 19-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Nov-2012.) |
⊢ 𝜑 ⇒ ⊢ (¬ 𝜓 ↔ (𝜓 → ¬ 𝜑)) | ||
Theorem | mtt 357 | Modus-tollens-like theorem. (Contributed by NM, 7-Apr-2001.) (Proof shortened by Wolf Lammen, 12-Nov-2012.) |
⊢ (¬ 𝜑 → (¬ 𝜓 ↔ (𝜓 → 𝜑))) | ||
Theorem | imnot 358 | If a proposition is false, then implying it is equivalent to being false. One of four theorems that can be used to simplify an implication (𝜑 → 𝜓), the other ones being ax-1 6 (true consequent), pm2.21 121 (false antecedent), pm5.5 354 (true antecedent). (Contributed by Mario Carneiro, 26-Apr-2019.) (Proof shortened by Wolf Lammen, 26-May-2019.) |
⊢ (¬ 𝜓 → ((𝜑 → 𝜓) ↔ ¬ 𝜑)) | ||
Theorem | pm5.501 359 | Theorem *5.501 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) |
⊢ (𝜑 → (𝜓 ↔ (𝜑 ↔ 𝜓))) | ||
Theorem | ibib 360 | Implication in terms of implication and biconditional. (Contributed by NM, 31-Mar-1994.) (Proof shortened by Wolf Lammen, 24-Jan-2013.) |
⊢ ((𝜑 → 𝜓) ↔ (𝜑 → (𝜑 ↔ 𝜓))) | ||
Theorem | ibibr 361 | Implication in terms of implication and biconditional. (Contributed by NM, 29-Apr-2005.) (Proof shortened by Wolf Lammen, 21-Dec-2013.) |
⊢ ((𝜑 → 𝜓) ↔ (𝜑 → (𝜓 ↔ 𝜑))) | ||
Theorem | tbt 362 | A wff is equivalent to its equivalence with a truth. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
⊢ 𝜑 ⇒ ⊢ (𝜓 ↔ (𝜓 ↔ 𝜑)) | ||
Theorem | nbn2 363 | The negation of a wff is equivalent to the wff's equivalence to falsehood. (Contributed by Juha Arpiainen, 19-Jan-2006.) (Proof shortened by Wolf Lammen, 28-Jan-2013.) |
⊢ (¬ 𝜑 → (¬ 𝜓 ↔ (𝜑 ↔ 𝜓))) | ||
Theorem | bibif 364 | Transfer negation via an equivalence. (Contributed by NM, 3-Oct-2007.) (Proof shortened by Wolf Lammen, 28-Jan-2013.) |
⊢ (¬ 𝜓 → ((𝜑 ↔ 𝜓) ↔ ¬ 𝜑)) | ||
Theorem | nbn 365 | The negation of a wff is equivalent to the wff's equivalence to falsehood. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 3-Oct-2013.) |
⊢ ¬ 𝜑 ⇒ ⊢ (¬ 𝜓 ↔ (𝜓 ↔ 𝜑)) | ||
Theorem | nbn3 366 | Transfer falsehood via equivalence. (Contributed by NM, 11-Sep-2006.) |
⊢ 𝜑 ⇒ ⊢ (¬ 𝜓 ↔ (𝜓 ↔ ¬ 𝜑)) | ||
Theorem | pm5.21im 367 | Two propositions are equivalent if they are both false. Closed form of 2false 368. Equivalent to a biimpr 212-like version of the xor-connective. (Contributed by Wolf Lammen, 13-May-2013.) |
⊢ (¬ 𝜑 → (¬ 𝜓 → (𝜑 ↔ 𝜓))) | ||
Theorem | 2false 368 | Two falsehoods are equivalent. (Contributed by NM, 4-Apr-2005.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
⊢ ¬ 𝜑 & ⊢ ¬ 𝜓 ⇒ ⊢ (𝜑 ↔ 𝜓) | ||
Theorem | 2falsed 369 | Two falsehoods are equivalent (deduction form). (Contributed by NM, 11-Oct-2013.) |
⊢ (𝜑 → ¬ 𝜓) & ⊢ (𝜑 → ¬ 𝜒) ⇒ ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | ||
Theorem | pm5.21ni 370 | Two propositions implying a false one are equivalent. (Contributed by NM, 16-Feb-1996.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜒 → 𝜓) ⇒ ⊢ (¬ 𝜓 → (𝜑 ↔ 𝜒)) | ||
Theorem | pm5.21nii 371 | Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 21-May-1999.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜒 → 𝜓) & ⊢ (𝜓 → (𝜑 ↔ 𝜒)) ⇒ ⊢ (𝜑 ↔ 𝜒) | ||
Theorem | pm5.21ndd 372 | Eliminate an antecedent implied by each side of a biconditional, deduction version. (Contributed by Paul Chapman, 21-Nov-2012.) (Proof shortened by Wolf Lammen, 6-Oct-2013.) |
⊢ (𝜑 → (𝜒 → 𝜓)) & ⊢ (𝜑 → (𝜃 → 𝜓)) & ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) ⇒ ⊢ (𝜑 → (𝜒 ↔ 𝜃)) | ||
Theorem | bija 373 | Combine antecedents into a single biconditional. This inference, reminiscent of ja 175, is reversible: The hypotheses can be deduced from the conclusion alone (see pm5.1im 255 and pm5.21im 367). (Contributed by Wolf Lammen, 13-May-2013.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (¬ 𝜑 → (¬ 𝜓 → 𝜒)) ⇒ ⊢ ((𝜑 ↔ 𝜓) → 𝜒) | ||
Theorem | pm5.18 374 | Theorem *5.18 of [WhiteheadRussell] p. 124. This theorem says that logical equivalence is the same as negated "exclusive or". (Contributed by NM, 28-Jun-2002.) (Proof shortened by Andrew Salmon, 20-Jun-2011.) (Proof shortened by Wolf Lammen, 15-Oct-2013.) |
⊢ ((𝜑 ↔ 𝜓) ↔ ¬ (𝜑 ↔ ¬ 𝜓)) | ||
Theorem | xor3 375 | Two ways to express "exclusive or". (Contributed by NM, 1-Jan-2006.) |
⊢ (¬ (𝜑 ↔ 𝜓) ↔ (𝜑 ↔ ¬ 𝜓)) | ||
Theorem | nbbn 376 | Move negation outside of biconditional. Compare Theorem *5.18 of [WhiteheadRussell] p. 124. (Contributed by NM, 27-Jun-2002.) (Proof shortened by Wolf Lammen, 20-Sep-2013.) |
⊢ ((¬ 𝜑 ↔ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) | ||
Theorem | biass 377 | Associative law for the biconditional. An axiom of system DS in Vladimir Lifschitz, "On calculational proofs", Annals of Pure and Applied Logic, 113:207-224, 2002, http://www.cs.utexas.edu/users/ai-lab/pub-view.php?PubID=26805. Interestingly, this law was not included in Principia Mathematica but was apparently first noted by Jan Lukasiewicz circa 1923. (Contributed by NM, 8-Jan-2005.) (Proof shortened by Juha Arpiainen, 19-Jan-2006.) (Proof shortened by Wolf Lammen, 21-Sep-2013.) |
⊢ (((𝜑 ↔ 𝜓) ↔ 𝜒) ↔ (𝜑 ↔ (𝜓 ↔ 𝜒))) | ||
Theorem | biluk 378 | Lukasiewicz's shortest axiom for equivalential calculus. Storrs McCall, ed., Polish Logic 1920-1939 (Oxford, 1967), p. 96. (Contributed by NM, 10-Jan-2005.) |
⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜒 ↔ 𝜓) ↔ (𝜑 ↔ 𝜒))) | ||
Theorem | pm5.19 379 | Theorem *5.19 of [WhiteheadRussell] p. 124. (Contributed by NM, 3-Jan-2005.) |
⊢ ¬ (𝜑 ↔ ¬ 𝜑) | ||
Theorem | bi2.04 380 | Logical equivalence of commuted antecedents. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 11-May-1993.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) ↔ (𝜓 → (𝜑 → 𝜒))) | ||
Theorem | pm5.4 381 | Antecedent absorption implication. Theorem *5.4 of [WhiteheadRussell] p. 125. (Contributed by NM, 5-Aug-1993.) |
⊢ ((𝜑 → (𝜑 → 𝜓)) ↔ (𝜑 → 𝜓)) | ||
Theorem | imdi 382 | Distributive law for implication. Compare Theorem *5.41 of [WhiteheadRussell] p. 125. (Contributed by NM, 5-Aug-1993.) |
⊢ ((𝜑 → (𝜓 → 𝜒)) ↔ ((𝜑 → 𝜓) → (𝜑 → 𝜒))) | ||
Theorem | pm5.41 383 | Theorem *5.41 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 12-Oct-2012.) |
⊢ (((𝜑 → 𝜓) → (𝜑 → 𝜒)) ↔ (𝜑 → (𝜓 → 𝜒))) | ||
Theorem | pm4.8 384 | Theorem *4.8 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) |
⊢ ((𝜑 → ¬ 𝜑) ↔ ¬ 𝜑) | ||
Theorem | pm4.81 385 | A formula is equivalent to its negation implying it. Theorem *4.81 of [WhiteheadRussell] p. 122. Note that the second step, using pm2.24 122, could also use ax-1 6. (Contributed by NM, 3-Jan-2005.) |
⊢ ((¬ 𝜑 → 𝜑) ↔ 𝜑) | ||
Theorem | imim21b 386 | Simplify an implication between two implications when the antecedent of the first is a consequence of the antecedent of the second. The reverse form is useful in producing the successor step in induction proofs. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Wolf Lammen, 14-Sep-2013.) |
⊢ ((𝜓 → 𝜑) → (((𝜑 → 𝜒) → (𝜓 → 𝜃)) ↔ (𝜓 → (𝜒 → 𝜃)))) | ||
This section defines conjunction of two formulas, denoted by infix "∧ " and read "and". It is defined in terms of implication and negation, which is possible in classical logic (but not in intuitionistic logic: see iset.mm). After the definition, we briefly introduce conversion of simple expressions to and from conjunction. Two simple operations called importation (imp 398) and exportation (ex 405) follow. In the propositions-as-types interpretation, they correspond to uncurrying and currying respectively. They are foundational for this section. Most of the theorems proved here trace back to them, mostly indirectly, in a layered fashion, where more complex expressions are built from simpler ones. Here are some of these successive layers: importation and exportation, commutativity and associativity laws, adding antecedents and simplifying, conjunction of consequents, syllogisms, etc. As indicated in the "note on definitions" in the section comment for logical equivalence, some theorems containing only implication, negation and conjunction are placed in the section after disjunction since theirs proofs use disjunction (although this is not required since definitions are conservative, see said section comment). | ||
Syntax | wa 387 | Extend wff definition to include conjunction ("and"). |
wff (𝜑 ∧ 𝜓) | ||
Definition | df-an 388 |
Define conjunction (logical "and"). Definition of [Margaris] p. 49. When
both the left and right operand are true, the result is true; when either
is false, the result is false. For example, it is true that
(2 = 2 ∧ 3 = 3). After we define the constant
true ⊤
(df-tru 1510) and the constant false ⊥ (df-fal 1520), we will be able
to prove these truth table values: ((⊤ ∧
⊤) ↔ ⊤)
(truantru 1540), ((⊤ ∧ ⊥)
↔ ⊥) (truanfal 1541),
((⊥ ∧ ⊤) ↔ ⊥) (falantru 1542), and
((⊥ ∧ ⊥) ↔ ⊥) (falanfal 1543).
This is our first use of the biconditional connective in a definition; we use the biconditional connective in place of the traditional "<=def=>", which means the same thing, except that we can manipulate the biconditional connective directly in proofs rather than having to rely on an informal definition substitution rule. Note that if we mechanically substitute ¬ (𝜑 → ¬ 𝜓) for (𝜑 ∧ 𝜓), we end up with an instance of previously proved theorem biid 253. This is the justification for the definition, along with the fact that it introduces a new symbol ∧. Contrast with ∨ (df-or 834), → (wi 4), ⊼ (df-nan 1464), and ⊻ (df-xor 1489). (Contributed by NM, 5-Jan-1993.) |
⊢ ((𝜑 ∧ 𝜓) ↔ ¬ (𝜑 → ¬ 𝜓)) | ||
Theorem | pm4.63 389 | Theorem *4.63 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.) |
⊢ (¬ (𝜑 → ¬ 𝜓) ↔ (𝜑 ∧ 𝜓)) | ||
Theorem | pm4.67 390 | Theorem *4.67 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.) |
⊢ (¬ (¬ 𝜑 → ¬ 𝜓) ↔ (¬ 𝜑 ∧ 𝜓)) | ||
Theorem | imnan 391 | Express an implication in terms of a negated conjunction. (Contributed by NM, 9-Apr-1994.) |
⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) | ||
Theorem | imnani 392 | Infer an implication from a negated conjunction. (Contributed by Mario Carneiro, 28-Sep-2015.) |
⊢ ¬ (𝜑 ∧ 𝜓) ⇒ ⊢ (𝜑 → ¬ 𝜓) | ||
Theorem | iman 393 | Implication in terms of conjunction and negation. Theorem 3.4(27) of [Stoll] p. 176. (Contributed by NM, 12-Mar-1993.) (Proof shortened by Wolf Lammen, 30-Oct-2012.) |
⊢ ((𝜑 → 𝜓) ↔ ¬ (𝜑 ∧ ¬ 𝜓)) | ||
Theorem | pm3.24 394 | Law of noncontradiction. Theorem *3.24 of [WhiteheadRussell] p. 111 (who call it the "law of contradiction"). (Contributed by NM, 16-Sep-1993.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
⊢ ¬ (𝜑 ∧ ¬ 𝜑) | ||
Theorem | annim 395 | Express a conjunction in terms of a negated implication. (Contributed by NM, 2-Aug-1994.) |
⊢ ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 → 𝜓)) | ||
Theorem | pm4.61 396 | Theorem *4.61 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.) |
⊢ (¬ (𝜑 → 𝜓) ↔ (𝜑 ∧ ¬ 𝜓)) | ||
Theorem | pm4.65 397 | Theorem *4.65 of [WhiteheadRussell] p. 120. (Contributed by NM, 3-Jan-2005.) |
⊢ (¬ (¬ 𝜑 → 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) | ||
Theorem | imp 398 | Importation inference. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Eric Schmidt, 22-Dec-2006.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | impcom 399 | Importation inference with commuted antecedents. (Contributed by NM, 25-May-2005.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ ((𝜓 ∧ 𝜑) → 𝜒) | ||
Theorem | con3dimp 400 | Variant of con3d 150 with importation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ ((𝜑 ∧ ¬ 𝜒) → ¬ 𝜓) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |