MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.41 Structured version   Visualization version   GIF version

Theorem pm5.41 391
Description: Theorem *5.41 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 12-Oct-2012.)
Assertion
Ref Expression
pm5.41 (((𝜑𝜓) → (𝜑𝜒)) ↔ (𝜑 → (𝜓𝜒)))

Proof of Theorem pm5.41
StepHypRef Expression
1 imdi 390 . 2 ((𝜑 → (𝜓𝜒)) ↔ ((𝜑𝜓) → (𝜑𝜒)))
21bicomi 223 1 (((𝜑𝜓) → (𝜑𝜒)) ↔ (𝜑 → (𝜓𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator